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Abstract - The control of an autonomous host vehicle at a 
crossroads intersection, in the presence of uncoordinated target 
vehicles, and without any crossing priority regulation is 
considered. The problem was spilt into two sub-problems, 
namely the priority and the path-planning problems. These 
problems are solved using a hierarchical controller. The lower 
control level is a linear controller to control the vehicle’s speed 
and heading, to follow the reference signals provided by a 
middle-level algorithm. This middle-level controller is a Model 
Predictive Control (MPC) computed by modelling a unicycle 
model that is in a Linear Parameter-Varying (LPV) state-space 
model form. Different features are introduced for improving 
the prediction capability of the LPV-MPC. Prediction data 
computed by the MPC are used by the higher-level state-
machine supervisor algorithm to determine when the host 
vehicle can safely cross the junction. The hierarchical controller 
was tested in simulation using a set of stressing scenarios. 
Reported results show the effectiveness of the proposed LPV-
MPC in managing complex traffic scenarios with efficient 
compute.  

I. INTRODUCTION 

Recent engineering developments in automotive control 
systems for Autonomous Vehicles (AVs) suggest future 
transportation mobility will be significantly different and 
opportunities in energy consumption saving and traffic 
incidence reduction will arise, along with the availability of 
connectivity through vehicle to vehicle/infrastructure [1]. 
The AVs are considered the way forward to the future of 
mobility, because of the possibility of significantly reducing 
traffic, pollution and travel time [2].  In order to resolve the 
open challenges and achieve the required performance, 
different advanced control solutions for AVs have been 
proposed in the last few years [3] and each control policy has 
been designed for a particular scenario, e.g. highway 
travelling or coordinated traffic control [4].  
 
In this paper the control of an autonomous Host Vehicle 
(HV) at a road junction in the presence of other 
uncoordinated Target Vehicles (TVs) is considered. In recent 
years, different solutions have been proposed to face this 
problem considering several aspects, such as crossing-time or 
the presence of traffic lights [5]. There has been a wide range 
of alternative control methods proposed in AV control 
systems for intersection handling, and two main themes are 
recurring: the introduction of a multi-level architecture of the 
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control system [6] and the use of an optimal control approach 
[7] [8]. 
 
The use of a hierarchical control structure was formalized in 
[9] [10], presenting algorithms and features for different 
levels defined in the controller. The multi-level architecture 
is a common approach used in AV control problems [7] [8], 
but there is not a common paradigm for design using these 
different control levels. Because of the characteristics of the 
control problem, the use of predictive control algorithms 
appears a natural choice for developing an AV path-planner. 
Different predictive control solutions can be considered for 
facing the road intersection path-planning problem. These 
solutions involve different modelling methods (e.g. 
linearized models, time-varying models or nonlinear models) 
[11], optimization approaches [12] (e.g. quadratic, linear and 
nonlinear optimization) or predictive control paradigms [13] 
(e.g. robust or stochastic control). 
 
In this paper, a hierarchical control system structure is 
designed in the following to exploit the features of the Model 
Predictive Control (MPC). The proposed multilevel control 
policy splits the road intersection control problem into sub-
problems:  

i) Priority problem: defining if the HV can safely cross 
the junction, according to the movement of other TVs 
and 

ii) Path planning problem: defining the trajectory for 
crossing the junction, after the priority problem has 
been solved.   

 
The priority problem is solved by a high level supervisor 
logic and the path planning problem is solved by middle and 
low level controllers. The low level involves a linear tracking 
controller, controlling the vehicle to follow the speed and 
heading reference signals provided by the middle-level. This 
middle level is an MPC-based path planner solving the 
planning problem by iteratively computing the HV optimal 
trajectory. The path planner uses a Linear Parameter-Varying 
(LPV)-MPC paradigm to reduce the computational time for 
the optimization problem, with reasonable tradeoff on 
diminished prediction accuracy [14]. Various features 
introduced to enhance the effectiveness of the LPV model 
approximation will be described in details and demonstrated 
in simulations. The path planner shares information with the 
supervisor for ensuring AV safety and increasing control 
performance. This is a key aspect, because in the considered 
scenario TVs ignore the AV behavior. 
 
The paper is structured as follows. Section 2 presents the 
intersection handling problem. Section 3 describes the 
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proposed control system. Section 4 presents the simulation 
results and Section 5 summarizes the conclusions. 

II. PROBLEM STATEMENT 

In this section an unsignalized/uncontrolled intersection 
problem for HV in the presence of uncoordinated TVs is 
introduced as shown in Figure 1.  
 

 
Figure 1. Road intersection scenario 

The HV needs to cross the junction but avoiding the impact 
with other TVs. In the proposed control scenario, only three 
TVs have been considered. Because of their number and 
position with respect to the HV the results can be generalized 
to any possible road intersection scenario. 
 
Remark 2.1. TVs’ future trajectories are estimated and 
updated every sampling time, and thus treated as known a 
priori information during the host controller’s receding 
horizon. 

A. Vehicle Model 

Modeling as a Dubins’ car at the rear axle, the host vehicle’s 
trajectory can be described by the following nonlinear 
system: 
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where (𝑥௥, 𝑦௥) and (𝑥௙, 𝑦௙) are rear and front wheel 
coordinates, 𝑣 and 𝑎 are longitudinal speed and acceleration, 
𝛼 and 𝛽 are the orientation and steering angle  and 𝑙௕ is the 
distance between the rear and front wheels. . The control 
inputs are vehicle acceleration a and steering angle  . To 

ensure trajectory feasibility, we placed bounds on the 
controls where acceleration ∈ ( , )min maxa a , steering angle ∈

( , )min max  , steering rate ∈ ( , )min max   and limit the state 

where vehicle heading angular rate ∈ ( , )min max   .  

 

B. Road Intersection 

The control scenario considered is shown in Figure 1. The 
three TVs considered are colored in blue, magenta and cyan. 
They are moving towards the junction to cross the 
intersection. The HV is the red vehicle on the left, moving to 
the junction. Several operating areas of the intersection are 
defined below to conduct the supervisor logic and control 
policy: 

 Working Area (WA) is a convex hull that extends 
beyond the entire intersection, but limited to sensing 
capability (either by infrastructures or the HV). 

 Predicted Crossing Area (PCA) is a convex 
polyhedron corridor inside the intersection 
connecting the initial position (PCAI) and desired 
destination (PCAO) of HV. It depends on the 
geometry of the intersection and the HV intention. 

 PCA Initial set point (PCAI) is the pose (position 
and orientation) the vehicle must reach as it heads 
towards the intersection. 

 PCA Over-the-junction set point (PCAO) is the 
pose (position and orientation) to be to be reached 
by the vehicle when the crossing operation is 
completed. 

 Way Points (WPs) are intermediate poses defined 
between PCAI and PCAO in the PCA. A WP 
indicates a favourite pose of passage, for adapting 
the trajectory to a variety of road topologies (e.g. 
junctions of irregular shapes or roundabout). 

Figure 1 shows WA and PCA in a left-turn road intersection 
scenario. The yellow square is the WA and the green shape is 
the PCA. This figure shows the instant where HV is 
approaching the intersection with its predicted trajectory 
shown in dashed line, it will reach PCAI and face the 
autonomous driving intersection handling control problem. 
The goal of the vehicle is to move through the PCA to reach 
PCAO, by passing through the WP. 

III. HIERARCHICAL CONTROL SYSTEM 

In this section the hierarchal control system is designed for 
the intersection handling problem defined above. The 
architecture of the multi-level control system is shown in 
Figure 2. 
 
As shown in Figure 2, the control system is organized in the 
three logical levels – Supervisor Logic, MPC Path Planner, 
and Speed & Attitude PID. The Supervisor Logic determines 
goal positions/poses; The MPC Path Planner plan and predict 
future poses of receding horizon with desired forward speed 
(𝑣̅) and heading angle (𝛼ത); The low-level controller Speed & 
Attitude PID then track the desired velocity and heading by 
applying acceleration (𝑎) and steering angle (𝛽).  The input 
command to the high-level Supervisor Logic is the 
Designated Lane ∈ {𝑟𝑖𝑔ℎ𝑡, 𝑙𝑒𝑓𝑡, 𝑓𝑟𝑜𝑛𝑡} to which the vehicle 
must move towards once it crossed the intersection. The 
Designated Lane is provided by an external controller that 
defines the vehicle’s route over a given map [15]. At each 
sampling time, the Supervisor Logic provides Set-Points (a 



  

set of poses 𝑥௦௣(𝑘 + 𝑖), 𝑦௦௣(𝑘 + 𝑖), 𝛼௦௣(𝑘 + 𝑖) for 𝑖 =

0,1, . . , 𝑁) to the mid-level controller where k indicates the 
current sampling time and the length of path planning 
horizon contains N samples.. The value of each pose in the 
Set-Points signal define spatial positions and orientations the 
vehicle will reach in the receding time horizon of length 𝑁. 
Note these Set-Points are the loosely populated goal 
positions/poses during the receding horizon, and not to be 
confused with the commonly used term ‘waypoints’ which 
describe intermediate points of vehicle positions/poses at a 
specific time on a the route of travel.  Therefore, the superset 
of Set-Points only include the PCAI:=(𝑥ூ, 𝑦ூ, 𝛼ூ) (when the 
vehicle is approaching to the junction), the next 
WP:=(𝑥ௐ, 𝑦௪, 𝛼௪)  (if any, while the vehicle is moving 
through the junction,) and the PCAO:=(𝑥ை, 𝑦ை, 𝛼ை)  that is 
related to the Designated Lane at the end of the junction. 

Specifically, ൬𝑥𝑠𝑝(𝑘 + 𝑖), 𝑦
𝑠𝑝

(𝑘 + 𝑖), 𝛼𝑠𝑝(𝑘 + 𝑖)൰ ∈ ቂቀ𝑥𝑗, 𝑦
𝑗
, 𝛼𝑗ቁቃ 

where 𝑗 = {𝐼, 𝑊, 𝑂} and 𝑖 = 0, 1, . . , 𝑁. Each goal position 
Set-Point ൫𝑥௝, 𝑦௝, 𝛼௝൯ is selected within the values {𝐼, 𝑊, 𝑂} by 
using the Prediction Data from the mid-level controller to 
determine feasible goals. Prediction Data contains predicted 
future poses of the HV (HV^P) computed by the mid-level 
controller 𝑥௣(𝑘 + 𝑖), 𝑦௣(𝑘 + 𝑖), 𝛼௣(𝑘 + 𝑖) with 𝑖 = 0, . . , 𝑁.  
 
With the above outline, we will describe the details of all 
three level controllers, starting from the low level one. 
 

 
Figure 2. Hierarchical controller structure 

 
 

A.  Low-Level Controller 
The low-level controller is designed to track the reference 
speed forward 𝑣̅ and heading angle 𝛼ത provided by the path 
planner by computing the forward acceleration 𝑎 and the 

vehicle steering angle 𝛽. The lower-level controller is given 
by two Proportional-Integral (PI) controllers with a sample 
time

LT . 

B. Mid-Level Path Planner 

The path planner is formulated as a MPC to find the mid-
level controls, i.e. desired vehicle speed 𝑣̅, and heading 𝛼ത, 
that provide the optimal feasible path towards the Set-Points 
provided from Supervisor Logic. By assuming direct control 
of vehicle speed and heading, the Mid-Level Planner only 
needs to consider portion of Eq (1), that is, 
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where 𝑣௫ and 𝑣௬ are the vehicle velocities expressed with 
respect to an external inertial reference frame and 𝛼  is the 
vehicle heading. For defining the MPC control law, the 
continuous-time nonlinear model of the unicycle was 
transformed into a discrete-time LPV model, considering a 
sample time 𝑇ெ . The discrete-time plant model used in the 
MPC design is as follows: 
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As one may notice, this plant model is not linear and would 
typically pose a computational challenge when solving the 
optimal path. For computation efficiency, we will formulate 
it as a linear parameter varying system instead, where we 
assume the heading angle can be treated as a priori 
information and a scheduling parameter. 
 
In practice, we will use the optimal path and heading solution 
over the receding horizon from the previously sampling time 
to schedule the LPV problem of current sampling time. 
Specifically, we will treat 𝑐𝑜𝑠൫(𝑘)൯ and 𝑠𝑖𝑛൫(𝑘)൯ as time-
varying parameters, such that the plant is now a Linear 
Parameter Varying model and the scheduling parameters 
vector is              

𝜌(𝑘) = ൣ𝑇ெ cos൫𝛼(𝑘)൯ , 𝑇ெsin (𝛼(𝑘)𝑘)൧
்

. The LPV state-
space matrices are evaluated at each time step iteratively 
given the value of the scheduling parameters. These are used 
in the MPC for predicting the outputs with 𝐴௞ =

𝐴(𝜌(𝑘)), 𝐵௞ = 𝐵൫𝜌(𝑘)൯ and 𝐶௞ = 𝐶(𝜌(𝑘)), such that: 
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The LPV state-space model of the unicycle considers the 
state vector x௞ = [𝑥(𝑘), 𝑦(𝑘), 𝛼(𝑘)]், the output vector 
y௞ = x௞ and the control input vector u௞ = [𝑣̅(𝑘), 𝛼ത(𝑘)]். 
Starting from the Set-Points (goal/target positions) from the 
high level supervisor logic, the MPC Path Planner uses the 
previous LPV model for computing the predicted positions 



  

and orientations (𝑥௣(𝑘 + 𝑖), 𝑦௣(𝑘 + 𝑖), 𝛼௣(𝑘 + 𝑖)) by using 
the sequence of control signals obtained by solving the MPC 
problem presented in the following. These poses are 
computed by using the LPV design model and the previous 
time instance optimization sequence by following the same 
policy considered for computing predicted scheduling 
parameters and presented in the following. Predicted poses 
are collected into the Prediction Data signal to be passed to 
the Supervisor Logic for defining the Set-Points composing 
the MPC reference signal r. This is defined by the sequence 
of 𝑁 Set-Points passed from the Supervisor Logic at the k-th 
time instance and stores predicted reference signals for the 

LPV-MPC, such that r୩ = ൣr௞ାଵ|௞ , … , r௞ାே|௞൧
୘
and r௞ା௜/௞ =

ൣ𝑥௦௣(𝑘 + 𝑖), 𝑦௦௣(𝑘 + 𝑖), 𝛼௦௣(𝑘 + 𝑖)൧
்

 with 𝑖 = 1, … , 𝑁௣  

(r௞ା௜|௞ = ൣ𝑥௝, 𝑦௝ , 𝛼௝൧
்
 with 𝑗 ∈ {𝐼, 𝑊, 𝑂}).   

 
Considering the previous LPV model and related signals, the 
MPC controller is formulated. When the cost-function is 
quadratic and constraints are affine, the LPV-MPC control 
law is obtained by solving the following optimization 
problem: 
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where 𝑵𝒑 is the prediction horizon, 𝑵𝒖 is the control 
horizon, 𝑸𝒚 and 𝑸𝒖 are square weighting matrices  with 𝑸𝒖 
invertible. The 𝐱𝒌ା𝒊|𝒌 denotes the prediction of the variable 𝐱 
at time 𝐤 + 𝐢 based on the information available at time 𝒌, 
𝚫𝐮𝒌ା𝒊|𝒌  is the vector of input increments, with 𝐮𝒌ି𝟏|𝒌 =

𝐮𝒌ି𝟏, 𝐫𝒌ା𝒊|𝒌 is the vector of output references, 
(𝚫𝐮𝐦𝐢𝐧, 𝚫𝐮𝐦𝐚𝐱 ), (𝐮𝐦𝐢𝐧, 𝐮𝐦𝐚𝐱), and (𝐲𝐦𝐢𝐧, 𝐲𝐦𝐚𝐱) are values 
defining polyhedral sets of constraints on the input rate, and 
input and output signals, respectively.  

The optimization sequence resulting from the solution of the 
MPC problem is then used for computing the predicted 
vehicle positions 𝑥௣(𝑘 + 𝑖), 𝑦௣(𝑘 + 𝑖) and orientation 

𝛼௣(𝑘 + 𝑖) with 𝑖 = ൣ1, . . 𝑁௣ ൧, over the prediction horizon 𝑁௣. 
These are defined to be passed to the Supervisor by the 
Prediction Data signal and are computed by driving the LPV 
design model with the MPC optimization sequence, such that 

x௞ାଵା௜|௞ି௜ = 𝐴௞ା௜|௞ିଵx௞ା௜|௞ିଵ + 𝐵௞ା௜|௞ିଵu௞ା௜|௞ିଵ  
u௞ା௜|௞ି௜ = 𝐶௞ା௜|௞ିଵx௞ା௜|௞ିଵ            (6) 

where u𝑘+𝑖|𝑘−1 is the input for the predicted k+i-th prediction 
step  computed in the previous time step k-1, the state-space 

matrices 𝐴𝑘+𝑖|𝑘−1, 𝐵𝑘+𝑖|𝑘−1, 𝐶𝑘+𝑖|𝑘−1 are the LPV model 
matrices evaluated at the k+i-th prediction time instance with 
respect to the previous time step k-1, and y௞ା௜|௞ିଵ =

x௞ା௜|௞ିଵ = ൣ𝑥௣(𝑘 + 𝑖), 𝑦௣(𝑘 + 𝑖), 𝛼௣(𝑘 + 𝑖)൧
்
is the predicted 

pose of the vehicle at the future k+i-th prediction time 
instance with respect to the last control sequence computed 
at the previous k-1-th time instance. The state-space matrices 

can be considered constant, such that 𝐴𝑘+𝑖|𝑘−1 = 𝐴𝑘|𝑘−1 , 

𝐵𝑘+𝑖|𝑘−1 = 𝐵𝑘|𝑘−1, 𝐶𝑘+𝑖|𝑘−1 = 𝐶𝑘|𝑘−1 with 𝑖 = [1, . . , 𝑁௣] if a 
scheduling parameter prediction policy is not considered. 
 
Note: The above describes how the Prediction Data 
(predicted poses along the MPC prediction horizon) are used 
to schedule the system matrices parameters. The same 

Prediction Data ቀ𝑥௣(𝑘 + 𝑖), 𝑦௣(𝑘 + 𝑖), 𝛼௣(𝑘 + 𝑖)ቁ is fed 

back to the High-Level supervisor logic for collision 
checking when traveling within a PCA. In the case where 
HV has yet to enter a PCA - for example, if the HV is 
slowing down towards PCAI - the high-level supervisor logic 
will use capable traveling speed 𝑣௠௔௫  to assess safe-crossing 
instead of predicted speed. That is, set 𝑣̅(𝑘 + 𝑖) = 𝑣௠௔௫  and 
𝛼ത(𝑘 + 𝑖) = 0  with 𝑖 = 1, … , 𝑁௣ as control sequence for 
computing predicted poses by Eq. (6). Such a set of predicted 

poses ቀ𝑥௣(𝑘 + 𝑖), 𝑦௣(𝑘 + 𝑖), 𝛼௣(𝑘 + 𝑖)ቁ is included in 

Prediction Data signal if ቀ𝑥௣(𝑘 + 𝑖), 𝑦௣(𝑘 + 𝑖), 𝛼௣(𝑘 + 𝑖)ቁ ∈

𝑃𝐶𝐴. The proposed LPV-MPC controller considers the 
standard form of the optimal control problem based the LPV 
model. To improve the effectiveness of the LPV model 
capability and the control performance, a number of different 
features have been considered: 
 
1. Scheduling parameter prediction. With receding horizon 
control, where the control trajectory of the prediction horizon 
is updated/refined at each sampling time as the time progress, 
we will use the state trajectory predicted from the control 
trajectory of previous sampling time to approximate the 
system matrix.  That is, the scheduling parameter of the LPV 
model is updated at each sampling time based on the 
predicted state (e.g. heading angle) along the prediction 
horizon in the previous sampling time. Specifically, 
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where the predicted value of the scheduling parameter vector 
𝜌(𝑘 + 𝑖|𝑘 − 1) is obtained from the predicted output 
y(𝑘 + 𝑖|𝑘 − 1) with the optimal input sequence  u௞ା௜|௞ିଵ 
computed in the previous time step, that is as in Eq.(6). 

 



  

2.  Convex approximation of the TVs constraints. The 
exact position of TVs is assumed to be known a-priori and 
can be used for defining the LPV-MPC problem. In practice, 
this assumed a-priori future TV positions (TV^P) are 
predicted based on constant speed and acceleration. While 
the prediction will not be accurate, the MPC planner will 
received updated TV information at each MPC Planner 
sampling time and adjust its constraints accordingly. To 
maintain the convexity of the optimization problem, an 
appropriate form of TV constraints is considered: in the case 
of only one TV, 𝑑௜  is defined as the distance between the 
actual position of HV and the position of TV at the i-th 
prediction instance. HV and TVs have been represented by 
convex polygons and the distance between them is computed 
as the distance between two polygons, by exploiting convex 
polygons proprieties and according to the method proposed 
in [16]. Considering the set of distances 𝑑௜ , with 𝑖 =
0, . . , 𝑁௣,  between the HV actual position and future 𝑁௣ 
positions of the TV,  the minimum distance 𝑑௠௜௡  is 
considered, such that: 
 

𝑑௠௜௡ = min ቀ|𝑑ଵ|, |𝑑ଶ|, … , ቚ𝑑ே೛
ቚቁ − Δ𝑠    (8) 

This distance 𝑑୫୧୬ is used to define a safe space around the 
HV, and it is constrained to move inside this space at the 
next time instant (and overall the prediction horizon):  

max min

max min

min min

min min

x ( ) x( )

y ( ) y( )

x ( ) x( )

y ( ) y( )

k i k d

k i k d

k i k d

k i k d

  

  

  
  

        (9) 

The policy neglects the presence of TV outside the Working 
Area (WA) or while HV is outside the WA. The distance 
𝑑௠௜௡  considers a security bound value (in the specific set to a 
fraction of the vehicle length, e.g. 𝛥𝑠 = 0.5𝑙௩) to improve the 
conservativeness and safety of constraints. 
 
3. Soft and hard constraints on minimum forward speed. 
The proposed LPV-MPC considers a set of constraints on the 
minimum forward speed, such that the vehicle cannot assume 
a negative speed crossing the junction. These constraints 
cannot guarantee the vehicle does not stop while crossing the 
junction (because of the minimum velocity limit is 𝑣̅௠௜௡଴ =
0). To reduce the possibility the HV may stop whilst crossing 
over the junction, two constraints on minimum speed 
(𝑣̅௠௜௡௣௢௦ and 𝑣̅௠௜௡଴) have been added, so that 𝑣̅௠௜௡௣௢௦ >

 𝑣̅௠௜௡ > 0. A set of slack variables  𝑠(𝑘 + 𝑖), … , 𝑠(𝑘 + 𝑁௨) 
have also been introduced for relaxing these constraints, such 
that: 

0

( ) (

(

)

)

minpos

min

k i s kv

v v k i

iv   


     (10) 

with 𝑖 = 1, … , 𝑁௨. Slack variables are used in the cost- 
function with weights 𝑄୼௨(𝑠) ≫ 𝑄୼௨(𝑢), such that the 

optimization problem can set those variables 𝑠(𝑘 + 𝑖) ≠ 0  
only when the vehicle must be stopped to guarantee the 
feasibility of the problem.  That is equivalent to stopping the 
vehicle to avoid a crash with road limits or TVs. 

C. High-Level Supervisor Logic 

The supervisor algorithm solves the priority problem (e.g. if 
host vehicle can enter the junction or PCA) by determining 
the set-point for the path planner. It is iteratively executed 

with a lower sampling rate ( MHT T ) with respect to the 

path planner. If other TVs are crossing the junction as the 
host vehicle approaching the junction, Supervisor Logic 
would determine the goal position Set-Point as the position 
before entering the intersection (PCAI) – thus force HV to 
stop. Otherwise, the Set-Points are defined as the PCAO, or 
the next WP if any. Set-Points values are defined with 
respect to the Designated Lane, the position of the center of 
the junction (𝑥௖ , 𝑦௖) and the lane size 𝐿 as in Table 1. While 
crossing the junction, the Set-Points signal vector 
components (𝑥௦௣(𝑘 + 𝑖), 𝑦௦௣(𝑘 + 𝑖), 𝛼௦௣(𝑘 + 𝑖)) are 
iteratively defined by considering the achievable poses of the 
vehicle based on the Prediction Data obtained by Mid-Level 
Path Planner. The supervisor makes explicit use of the 
prediction computed by the MPC optimization sequence to 
determine goal positions Set-Points that are safe and efficient 
(or time competitive).  The supervisor control logic is show 
in Figure 3. 

D. Computational Complexity 

Despite recent advance and technological innovation in the 
automotive control fields, the execution of advanced 
controllers on the most common Advanced Driver Assistance 
Systems (ADASs) would be a complex task. The proposed 
approach would permit to limit such issues by dividing the 
control target in two different problems that can be solved 
independently.  
 
The priority problem is solved by the Supervisor Logic that 
permits to face any type of road intersection scenario 
according to a state-machine policy. This limits the 
computational complexity that can be evaluated a priori by 
considering the worst-case scenario the HV would face and 
overcoming computational issues related to other methods 
(e.g. solving priority and path planning problems in 
conjunction by single controller [17]). 
 
The mid-layer of control has been formulated in the form of 
a LPV-MPC and would represent the main issues in terms of 
computational complexity. As presented in [14], the 
computational burden of MPC based on LPV model is 
strictly related to the time required for iteratively defining the 
optimization problem. On the other side, the optimization 
solver requires a not neglectable time to solve the MPC 
problem. The proposed LPV-MPC would be suitable to be 
formulated according to formulation permitting to limit such 
issues, e.g. by using a Multi-Parametric Programming [18] 
approach for reducing the optimization problem to an 
approximated and simpler form to be solved on-line, or by 



  

applying a nonlinear transformation to the original problem 
able to cast it in a simpler LTI-MPC [19].  
 

Figure 3. Supervisor Logic Diagram 
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Table 1. Set-Points Definition 

These solutions would permit to limit the computational 
complexity of the proposed MPC, further including the 
different features (e.g. scheduling parameters prediction) that 
would be integrated directly into any of the considered 
methods, with the possibility to extend the approach for 
including information provided from external 
systems/sensors (e.g. V2x communication). 

IV. SIMULATION RESULTS 

In this section the simulation results obtained by testing the 
proposed control system for different junction traffic 
scenarios are reported. A right turn scenario (scenario 1) and 
a left turn scenario (scenario 2) have been considered. These 

scenarios have been characterized for testing the HV 
controller in stressing conditions. The MPC tuning 
parameters have been collected in Table 2.   
 
The first scenario considers the HV facing a junction in the 
presence of three TVs approaching and moving over the 
junction, maintaining the initial lane during the test (each TV 
moves through the junction maintaining the initial heading). 
The control target of the HV is to move over the junction to 
reach the lane on the right over the junction. The HV a priori 
knows the instantaneous and future behavior of TVs, 
whereas TVs neglect the presence of the HV while 
performing the maneuver. 
 

Symbol Parameter Value 

uN  Control Horizon 5 

pN  Prediction Horizon 6 

pyN  Previewing Horizon 3 

pN   
Scheduling Parameters 

Prediction Horizon 
3 

yQ  
Output Weight Matrix 

(𝑥, 𝑦, ) 
diag([35 35 75]) 

uQ  
Input Weight Matrix 

(𝑣̅,𝛼ത) 
diag([0.01 1]) 

maxu  
Max Input Constraints 

(𝑣̅,𝛼ത) 
(4.25, 4.71) 

minu  
Min Input Constraints 

(𝑣̅,𝛼ത) 
(0, -4.71) 

minu  
Min Input Rate 

Constraints (Δ𝑣̅,Δ𝛼ത) 
(-3.3527, -

0.3142) 

maxu  
Max Input Rate 

Constraints (Δ𝑣̅,Δ𝛼ത) 
(3.3527, 0.3142) 

,min maxy y  
Min/Max Output 

Constraints 

Given by 
road/TVs 
positions 

 

Table 2. MPC Tuning Parameters 

The initial conditions of the road traffic, while the HV is 
approaching the junction, are shown in Figure 4. The TVs 
initial positions are given in magenta, blue and cyan and the 
TV is represented by the red shape. Furthermore, the 
trajectory predicted over the prediction horizon at the initial 
time instant is represented by the dotted red line and the 
complete trajectory followed by the HV is given by the red 
dashed line. The WA is limited by a yellow line and the 
predicted crossing area used for defining the position 
constraints that the path planning algorithm should satisfy, is 
indicated by the green line. To evaluate the control 
performance and assess the effectiveness of the control 
solution, the dynamics of the input and output signals 
involved in control are as shown in Figure 5. The control 
effort computed by the MPC-based path planner is given by 
the reference heading and speed signals for controlling the 
low-level control loop. The vehicle speed dynamics involves 
linear behavior, so that the LPV-MPC computes the 
prediction over the horizon correctly and the vehicle output 
follows the velocity reference correctly. On the other hand, 
because of the nonlinear behavior of the HV heading 



  

dynamics, the reference angular position provided by the 
MPC does not exactly reflect the nonlinear system behavior 
and there is a delay between the reference and tracking 
results. The results relating to the heading angle are shown 
for the final heading set-point the vehicle should achieve 
over the junction (dash-dotted blue line) and the angular set-
point considered by the MPC over the simulation (dotted 
blue line). This was defined according to the HV position by 
the supervisor. The MPC also considers constraints on the 
control input rate, acceleration and yaw rate dynamics. Input 
rate and magnitude constraints are represented by the 
magenta dash-dotted lines. 

 
Figure 4. Traffic Scenario 1. Initial position of HV, TVs and HV trajectory. 

 

 
Figure 5. Traffic Scenario 1. Control Input and Controlled Output Signals 

 
The HV performs the crossing operation while TVs are not 
in the PCA, and position constraints are given by the size and 
the shape of the PCA. Before crossing, the minimum position 
over the x-axis is computed with respect to the vehicle’s 
position, whereas after the crossing the y-minimum position 
is constrained. While moving over a lane, later positions of 

the HV are constrained according to the lane size. The HV 
control speed is constrained by two different minimum 
values, representing the set of hard and soft constraints used 
for forcing the vehicle to avoid stopping during the junction 
crossing. The second scenario tested the algorithm while 
driving the HV for a left turn control target, assuming TVs 
act as in the previous test. The initial conditions giving the 
control scenario and the trajectory followed by the vehicle 
while moving through the junction are shown in Figure 6. 

 
Figure 6. Traffic Scenario 2. Initial position of HV, TVs and HV trajectory. 

 

 
Figure 7. Traffic Scenario 2. Control Input and Controlled Output Signals 

 
This shows the PCA convex set when approaching the left 
lane. Results showing the dynamics of the vehicle together 
with control input, controlled output and constraints are 
shown in Figure 7. While the HV is moving through the 
junction other TVs are in the PCA. These vehicles are 
considered for updating the position constraints considered 
by the MPC whilst computing the feasible trajectory. 



  

Because of this, in the time interval for 7.5 22.5t   the 
value of max/min constraints for x and y linear position of 
the HV are close to the positions of the vehicle. When the 
vehicle is outside the junction, constraints are given by the 
lane size ant the position of the TVs moving in front on the 
HV, in the same line. Due to the presence of this vehicle, the 
velocity of the HV is limited while moving in the target lane 
( 25t  ). Due to the anticipative action the heading 
trajectory defined by the MPC changes before the set-point 
signal. This is due to the use of preview on the heading 
reference signal ensures a feasible and smooth trajectory, 
avoiding overshoot during a change in direction. Further, the 
effect of the constraint softening given by activation of the 
slack variable is shown at 7.5t   when the yaw rate 
computed by the MPC overcomes the constraints. Given the 
constraint softening feature, the problem maintains the 
feasibility, and the solution computed by the MPC can be 
computed over a relaxed set of solutions [6]. 

V. CONCLUSION 

A Model Predictive Control (MPC) based path planning 
algorithm, working in conjunction with a supervisor logic 
and a commanded motion (speed/heading) following 
controller, has been proposed for solving the problem of an 
Autonomous Vehicle (AV) Host Vehicle (HV) crossing a 
road junction in the presence of uncoordinated Target 
Vehicles (TVs) which ignore the HV behavior.  
 
The path planner was developed using an MPC framework 
and a Linear Parameter-Varying (LPV) representation of the 
nonlinear vehicle trajectory model. The LPV representation 
significantly reduced the computational burden for solving 
the original nonlinear optimal control problem with a certain 
degree of sub-optimality and approximation. The 
approximation error arose from the LPV modelling is further 
reduced by introducing various features detailed in this 
paper, leading to an effective solution of the original 
problem.  
 
Supervisor logic has been developed to work in conjunction 
with the path planner to share information with it, so that the 
multi-modality of the intersection problem can be decoupled 
to logical decision making and convex path optimization. 
The safety margin of the vehicle whilst performing the 
crossing operation is thereby improved with judicious 
conservativeness (no two vehicles can occupy the same sub-
areas of the intersection). Different traffic scenarios have 
been tested for the proposed solution. 
 
The simulation results demonstrate the effectiveness of the 
controller in managing complex traffic scenarios, adapting 
the control action properly. Further research can be aimed at 
estimating the uncertainties of target vehicle behaviors, or 
developing an automated supervisor logic system, as 
opposed to handcrafted rules, for generalizing the 
applications to all possible traffic and road topology 
scenarios. Solutions based on Artificial Intelligence (AI) and 
Game Theory are potential candidates. 
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