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Abstract— The design and development of a data-driven 
algorithm for battery State-of-Charge estimation is presented. 
The estimation of battery SoC is important in the development 
of Battery Management Systems. The proposed approach 
exploits the Least-Squares Support Vector Machine data-driven 
estimation paradigm and statistical methods. The algorithm’s 
computational complexity is reduced by using a data pruning 
procedure. The approach is validated using a simulation model 
of the battery and an Estimator Design Tool in MATLAB 
software which provides a user-friendly interface for the 
different algorithms that may be used in the estimator design. 
The approach is applicable to a wide range of applications. 

Keywords: Battery Management System, Least-Squares 
Support Vector Machine, State-of-Charge Estimator. 

I. INTRODUCTION 

Hybrid vehicles with electric power zero-emissions 
powertrains have been widely studied in the automotive 
systems. These vehicles involve battery energy storage 
supplying the vehicle powertrain (in pure battery electric 
vehicles) in conjunction with other power sources e.g., Fuel 
Cells (in some hybrid electric vehicles) [1]. The green 
revolution highlights the importance of batteries and related 
battery management systems (BMSs) in automotive and in 
other transport applications [2]. A modern BMS is has several 
control layers for different tasks, e.g. battery cell balancing [3].  

The development of the estimators is a critical aspect of 
BMS design. These algorithms must compute the estimate of 
battery characteristics that are unmeasurable, e.g. for the 
battery equivalent capacity; the battery resistance, or the 
battery State-of-Charge (SoC) [4]. Several methods can be 
used for developing these estimators. Voltage-based and 
Current-based are the classical estimation methods used. 
Among advanced techniques, Kalman Filter (KF)-based 
methods have been widely used for BMS estimator design [5].  

The limitations of these techniques are related to the 
dependency of the estimator performance on the ability of the 
user to specify the model structure and parameters for the 
actual battery system. Due to the large variety of battery 
technologies, architectures, and the uncertainties in the system 
parameters, the design of a BMS estimator is a complex and 
time-consuming task [6]. Several data-driven techniques and 
combined data-driven and model-based methods have been 
proposed in the last few years to solve the BMS SoC 
estimation problem. These papers considered Neural Network 
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(NN)-based estimators, Fuzzy Logic inspired solutions, and 
KF-based algorithms, combining ML and models-based 
approaches [7]. 

In the following a purely data-driven design methodology 
is proposed to perform general battery estimation and the focus 
is on the battery State-of-Charge (SoC) estimation problem. It 
combines the modern data-driven Least Squares Support 
Vector Machine (LS-SVM) paradigm with a pruning 
procedure for more efficient computations. In addition, it uses 
the Particle Swarm Optimization (PSO) method for tuning the 
algorithm. The LS-SVM is used in a Supervised Learning ML 
framework for developing the algorithm [8]. The Pruning 
method selects the most important samples from the original 
training dataset. This reduces the computational complexity 
and the memory footprint of the algorithm whilst maintaining 
satisfactory estimation performance [9].  

The dataset considered has been collected by emulating a 
real battery using an Enhanced Self-Correcting (ESC) battery 
simulation model. A baseline estimator has also been 
developed for comparison with a model-based approach. This 
is an Extended Kalman Filter (EKF) based on the battery ESC 
model. The estimators were compared in a simulation, in terms 
of performance and computational complexity, using a set of 
computed performance indices.  

The paper is structured as follows. Section II describes the 
battery model and related dataset, Section III presents the 
baseline and data-driven estimation methods, Section IV 
reports test results, and Section V concludes the paper. 

II. BATTERY MODEL AND DATASET 

The battery State-of-Charge model, and the dataset collected 
from the simulated system are now presented. 

A. Battery State-of-Charge 

The SoC of the i-th battery cell is defined as:  

𝑆𝑜𝐶௜(𝑘) =
 ఏ(௞)ିఏబ%

ఏభబబ%ିఏబ%
       (1) 

where 𝜃(𝑘) is the average lithium concentration 
stoichiometry at a discrete time  𝑘 defined as: 

𝜃(𝑘) =
௖ೞ,ೌೡ೒,ೖ

௖ೞ,೘ೌೣ
         (2) 

This is intended to remain between 0% and 100%, although 
it is possible to violate these limits in an over-discharge or 
over-charge situation [11]. The issue here is that there is 
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presently no direct way to measure the concentrations that 
would allow us to calculate the stoichiometries and from them 
the SoC. It is therefore necessary to infer or estimate SoC 
using only the measurements of cell terminal voltage, current, 
and temperature. Although the cell Open-Circuit Voltage 
(OCV) is closely related to the state of charge, the terminal 
voltage under load is a poor predictor of open-circuit voltage 
unless the cell is in electrochemical equilibrium (and 
hysteresis is negligible).  

B. Battery Model 

A high-fidelity model of a battery cell, based on reference  
[12], has been used to simulate a real battery and generate the 
dataset required for the data-driven algorithm training. This is 
the ESC model, referred to above. It represents the OCV as a 
function of SoC, linear polarization, diffusion voltage, SoC-
varying hysteresis, and instantaneous hysteresis [13]. The 
ESC model shown in Fig.1 is described in the following. 
 

 
Fig. 1. Battery Cell Model 

 
The battery SoC is modelled as: 

𝑆𝑜𝐶(𝑘 + 1) = 𝑆𝑜𝐶(𝑘) − 𝜂(𝑘)𝑖(𝑘)𝛥𝑡/𝑄 (3) 
where 𝜂(𝑘) is the unitless cell coulombic efficiency at time 𝑘, 
𝑖(𝑘) is the input current at time 𝑘, 𝛥𝑡 is the sample period, 
and 𝑄 is the cell's total capacity. SoC is unitless, so e.g. if 
𝑖(𝑘) is measured in amperes and 𝛥𝑡 is measured in seconds, 
then 𝑄 must be expressed in ampere-seconds. The Diffusion-
Resistor current is the current flowing through the resistor 𝑅ଵ 
in the resistor-capacitor network and is modelled as: 

𝑖ோభ
(𝑘 + 1) = 𝑒

ቀି
೩೟

ೃభ಴భ
ቁ
𝑖ோభ

(𝑘) + ൬1 − 𝑒
ቀି

೩೟

ೃభ಴భ
ቁ
൰ 𝑖(𝑘)   (4) 

This model captures the slow time constants of diffusion 
processes occurring within the cell. The hysteresis voltage is 
modelled as a hysteresis function ℎ  

ℎ(𝑘 + 1) = 𝑎௛(𝑘)ℎ(𝑘) + (𝑎௛(𝑘) − 1)𝑠𝑔𝑛൫𝑖(𝑘)൯  (5) 

where 𝑎௛(𝑘) = 𝑒
ቀିቚ

ആ(ೖ)೔(ೖ)ം೩೟

ೂ
ቚቁ

. In this equation, the constant 
γ adjusts how quickly the hysteresis state changes with a 
change in cell SoC and 𝑠𝑔𝑛൫𝑖(𝑘)൯ is 1 if its input is positive, 
−1 if negative, and 0 otherwise. This ESC model describes the 
SoC evolution and all dynamic effects. The ESC output 
equation computes the voltage 𝑣(𝑘) at discrete-time index  𝑘 
as: 
𝑣(𝑘) = 𝑂𝐶𝑉൫𝑆𝑜𝐶(𝑘)൯ + 𝑀ℎ(𝑘) + 𝑀଴𝑠(𝑘) +  

− ∑ 𝑅௜𝑖ோ೔
(𝑘) − 𝑅଴𝑖(𝑘) (6) 

where 𝑂𝐶𝑉(𝑆𝑜𝐶(𝑘)) is the 𝑂𝐶𝑉as a function of 𝑆𝑜𝐶, 𝑀 is 
the maximum absolute analog hysteresis voltage at this 
temperature, 𝑀଴ is the instantaneous hysteresis voltage, and 

𝑅଴ is the pure ohmic resistance of the cell. The battery 
parameters are given in Table 1 below [13]. 
 

C. Battery Dataset 

The training data was generated from the ESC model and 
consisted of the battery cell voltage 𝑣,  current 𝑖, and the 𝑆𝑜𝐶 
output signal. These signals are shown in Figure 2. The 
scenario represents a battery cell discharging from an initial 
value of 𝑆𝑜𝐶(𝑡଴) = 100% to 𝑆𝑜𝐶൫𝑡௙൯ = 0%. The dataset 
contains 3700 data points. 
 

Table. 1. Battery Cell Model Specifications 
 

Parameter Value Unit 

𝐶ଵ 38 k𝐹 

𝑅ଵ 0.0158 𝛺 

𝑅଴ 0.0082 𝛺 

 

                        
Fig. 2. Dataset signals: battery cell voltage (top), battery current (center), 
and SoC (bottom) 

III. BATTERY STATE-OF-CHARGE ESTIMATORS 

The proposed data driven SoC estimator design approach is 
presented below and the baseline estimation algorithm for 
comparison purposes is described. 

A. Least-Squares Support Vector Machine 

The LS-SVM is derived from a standard SVM and is often 
used for optimal control of nonlinear Karsh-Kuhn-Tucker 
(KKT) systems for classification and regression. Given a set 
of data 𝐷 = {(𝑥ଵ, 𝑦ଵ), … , (𝑥௡ , 𝑦௡)}, with 𝑥௜ ∈ ℝ௣ and 𝑦௜ ∈ ℝ, 
the LS-SVM finds a nonlinear regression function: 

𝑦(𝑥) = 𝑤்𝜙(𝑥) + 𝑏        (7) 
by solving the optimization problem: 

min 𝐽(𝑤, 𝜉)௪,క =
ଵ

ଶ
𝑤்𝑤 +

ఊ

ଶ
∑ 𝜉௞

ே
௞ୀଵ

ଶ
    (8) 

such that 



  

𝑦(𝑥௜) = 𝑤்𝜙(𝑥௜) + 𝑏 + 𝜉௜.     (9) 
This formulation of the problem consists of equality 
constraints instead of inequality constraints, such that the 
related Lagrange function is defined as: 
𝐿(𝑤, 𝑏, 𝜉, 𝛼) = 𝐽(𝑤, 𝑏, 𝜉) − ∑ 𝛼௜{𝑤்𝜙(𝑥௜) + 𝑏 − 𝑦௜ + 𝜉௜}ே

௜ୀଵ   (10) 
where the Lagrange multipliers 𝛼௜ represent the solution of 
the dual problem and can be computed by solving the 
following system of equations:  

డ௅

డ௪
= 0 → 𝑤 =  ∑ 𝛼௜

ே
௜ୀଵ 𝜙(𝑥௜)     (11) 

డ௅

డ௕
= 0 →  ∑ 𝛼௜

ே
௜ୀଵ = 0       (12) 

డ௅

డక೔
= 0 → 𝛾 − 𝛼௜ = 0        (13) 

డ௅

డఈ೔
= 0 → 𝑤𝑇𝜙(𝑥௜) + 𝑏 − 𝑦௜ + 𝜉௜ = 0   (14) 

The solution of the system as in Eq. (11) - Eq. (14) is given 
by the following matrix equation: 

ቀΩ +
ଵ

ஓ
I ቁ α =  𝑌        (15) 

with 𝑌 = [𝑦ଵ, … , 𝑦ே]′, 𝛼 = [𝛼ଵ, … , 𝛼ே]′, and where the kernel 
matrix Ω entries are computed by 

Ω௜,௝ = 𝑦௜𝑦௝𝜙(𝑥௜)்𝜙൫𝑥௝൯ = 𝑦௜𝑦௝𝐾(𝑥௜ , 𝑥௝)   (16) 
The fitting function, representing the LS-SVM regression 
output is then: 

𝑦(𝑥) = ∑ 𝛼௜𝐾(𝑥௜ , 𝑥)ே
௜ୀଵ       (17) 

The Lagrangian multipliers 𝛼௜ are the solution of the linear 
system Eq. (17), and 𝐾(𝑥௜ , 𝑥) is the selected kernel function. 

B. Pruning Procedure 

One of the main issues in LS-SVM identification is the size 
of the training dataset. The estimate is computed iteratively 
by comparing the training dataset information with the 
measurements from the real system. There are two issues: (i) 
The computational burden increases with the dataset size and 
when the training dataset is large, the iterative computation of 
the estimate could be prohibitive in real-time or even for 
simulation purposes [8]; (ii) To use the LS-SVM on real 
systems, the training data must be stored in memory, reducing 
the possibility of porting the algorithm onto hardware with 
limited resources [9]. Because the LS-SVM is a kernel 
method, the most significant features of the training dataset 
cannot be selected a priori, but can be only evaluated after the 
training of the algorithm. A possible solution for reducing the 
training dataset size, reducing computational burden and data 
storage memory, is given by the so-called pruning method. 
This method involves iteratively performing a LS-SVM 
identification, reducing the size of the training dataset at each 
iteration, by gradually omitting the training data related to the 
less significant Lagrangian multipliers. This method allows 
one to define a priori the maximum size of the data subset to 
consider, or equivalently, the acceptable value of the 
identification performance degradation [14].   
 
The pruning procedure is performed by the following steps:  
(1). Considering the original dataset of size 𝑁, train the LS-

SVM. 
(2). Remove small number of points (e.g., ∆𝑁 = 5% of 𝑁 ) 

corresponding to the smallest values in the |𝛼௞| 
spectrum. 

(3). Train the LS-SVM with the new reduced dataset. Go to 
point 2 until the identification performance degradation 
threshold is exceeded. 

C. Particle Swarm Optimization 

The Particle Swarm Optimization (PSO) is a global 
optimization algorithm, inspired by birds’ flocking or fish 
schooling for the solution of nonlinear, nonconvex, or 
combinatorial optimization problems [10]. The PSO 
optimization uses evolutionary techniques for  finding the 
global minimum of a function. The solution to the optimization 
problem is obtained through a random search equipped with 
swarm intelligence. The initial ideas on particle swarms of 
Kennedy and Eberhart were aimed at using computational 
intelligence by exploiting simple analogues of social 
interaction, rather than purely individual cognitive abilities 
[10]. In this problem PSO is used to optimize the tuning 
parameters that calibrate the LS-SVM trained on the selected 
dataset.  In this approach several simple entities (the particles), 
are placed in the search space of some problem or function, 
and each evaluates the objective function at its current 
location. Every particle in a swarm has three 𝑁-dimensional 
vectors, where 𝑁 is the dimensionality of the search space. 
These are the current position 𝑥௜, the previous best position 𝑝௜ , 
and the velocity 𝑣௜. The current position 𝑥௜can be considered 
as a set of coordinates describing a point in space. On each 
iteration of the algorithm, the current position is evaluated as 
a problem solution. If that position is better than any that has 
been found so far, then the coordinates are stored in the second 
vector, 𝑝௜ . The value of the best function result so far is stored 
in a variable that can be called 𝑝௣௕,௜, for comparison on later 
iterations. The goal is to keep finding better positions and 
updating 𝑝௜  and 𝑝௣௕,௜. New points are chosen by adding vi 

coordinates to 𝑥௜, and the algorithm operates by adjusting 𝑣௜, 
which can effectively be seen as a step size. The structure of 
the PSO algorithm is described by the following steps: 

(1). The population is initialized with random initial positions 
and velocities on the research space of dimension 𝑁. 

(2). The desired fitness function in 𝑁 variables is evaluated 
for each particle. 

(3). Compare the fitness function values of each particle in 
the swarm to find the best particle. 

(4). Identify the particles in the neighborhood of the best 
particle by indexing the swarm. 

(5). Change the velocity and position of each particle 
according to the updated law. 

(6). Check the stopping criteria: this stops the algorithm if 
satisfied or iterates from step 2 if not satisfied. 

The basic PSO described above has a small number of 
parameters that need to be fixed. One parameter is the size of 
the population. This is often set empirically based on the 
dimensionality and the perceived difficulty of a problem. The 
role of the PSO is to automatically compute the best set of 
calibration parameters for the LS-SVM to minimize the 
estimated SoC tracking error. 



  

D. Data-driven Estimator Design Procedure 

The data-driven estimator design is based on ML and 
statistical methods. To limit the computational complexity, 
the following design procedure was defined: 
 Phase 1: Perform a first LS-SVM training based on PSO 

and the original training dataset to compute estimator 
calibration parameters. 

 Phase 2: Perform the Pruning Analysis with the 
calibration parameters computed in Phase 1 and select the 
size of the pruned dataset to be considered for the final 
estimator training. 

 Phase 3: Perform the final LS-SVM training.  

The proposed design approach has been undertaken using 
design software presented in the following section. 

E. Data-driven Estimator Design Tool 

The design approach proposed in the previous section is 
implemented in a Data-driven Estimator Design Tool 
developed by Industrial Systems and Control Ltd., to simplify 
the time-consuming development process. The software 
generates the data-driven estimator by exploiting the 
capabilities of ML techniques. The Graphical User Interface 
of the software is shown in Figure 3. The Design Tool allows 
the adjustment of the tuning parameters for the LS-SVM 
training and the pruning procedure. The GUI provides 
feedback to the user in terms of estimation/pruning graphical 
results and identification of performance statistics. As shown 
in the GUI figure, the Design Tool includes a set of common 
data manipulation methods e.g., data normalization or 
Entropy-based Analysis.   
 

 
 

Fig. 3. Data-Driven Estimator Design Tool GUI 

F. Baseline Estimator 

An Extended Kalman Filter (EKF) is the baseline estimator to 
be used for comparison purposes. The first step for 
developing an EKF for battery SoC estimation is to define the 
state-space matrices locally describing the model over 
instantaneous operating conditions. Suppose that the process 
noise represents the current-sensor measurement error and 
that the true cell current is 𝑖௞  +  𝑤௞, but that we measure 𝑖௞ 
only. Also, assume we can simplify the model with coulombic 
efficiency 𝜂௞  =  1, and allow the adaptivity of the EKF to 
handle the small error introduced by this assumption. Using 
the notation 𝑆𝑜𝐶௞ = 𝑆𝑜𝐶(𝑘), the SoC can be written as: 

𝑆𝑜𝐶௞ାଵ = 𝑆𝑜𝐶௞ −
୼௧

ொ
(𝑖௞ + 𝑤௞)      (18) 

and the two derivatives needed are: 
డௌ௢஼ೖశభ

డௌ௢஼ೖ
|ௌ௢஼ೖୀௌ௢஼ೖ

∗ = 1;   
డௌ௢ ೖశభ

డ௪ೖ
|ௌ௢஼ೖୀௌ௢஼ೖ

∗ = −
୼௧

ொ
  (19) 

By defining 𝜏௝ = 𝑒
ቆ

౴೟

ೃೕ಴ೕ
ቇ

  then: 

𝑖ோ,௞ାଵ = ൥
𝜏ଵ 0 0
0 𝜏 ଶ 0
0 0 …

൩ 𝑖ோ,௞ + ൥
1 − 𝜏ଵ

1 − 𝜏ଶ

…
൩ (𝑖௞ + 𝑤௞)          (20) 

Then the state equation matrices are computed as: 
డ௜ೃ,ೖశభ

డோೖ
|ோೖୀோೖ

∗ = 𝐴ோ஼     ;     
డ௜ೃ,ೖశభ

డ௪ೖ
|௪ೖୀ௪ೖ

∗ = 𝐵ோ஼   (21) 

By defining 𝐴ு,௞ = 𝑒
൬ି

൫೔ೖశೢೖ൯ം౴೟

ೂ
൰
 then the hysteresis state 

equation can be written as: 
ℎ௞ାଵ = 𝐴ு,௞ℎ௞ + (𝐴ு,௞ − 1)𝑠𝑔𝑛(𝑖௞ + 𝑤௞).  (22) 

By taking the partial derivative with respect to the state and 
evaluating it at the setpoint 𝑝௞  

డ௛ೖశభ

డ௛ೖ
|௛ೖୀ௛ೖ

∗ = 𝑒
൬ି

൫೔ೖశೢೖ൯ം౴೟

ೂ
൰

= 𝐴̅ு,௞    (23) 

We find 
డ௛ೖశభ

డ௪ೖ
 as follows: 

 If (𝑖௞ + 𝑤௞) > 0 then 

డ௛ೖశభ

డ௪ೖ
|௛ೖୀ௛ೖ

∗ = − ቚ
ఊ୼௧

ொ
ቚ 𝑒

ቀିቚ
ം౴೟

ೂ
ቚ |(௜ೖା௪ೖ)| ቁ

(1 + ℎ௞)  (24) 

 If (𝑖௞ + 𝑤௞) < 0 then:  
డ௛ೖశభ

డ௪ೖ
|௛ೖୀ௛ೖ

∗ = − ቚ
ఊ୼௧

ொ
ቚ 𝑒

ቀିቚ
ം౴೟

ೂ
ቚ |(௜ೖା௪ೖ)| ቁ

(1 − ℎ௞)  (25) 

While evaluating the Taylor-series linearization at the 
setpoint it may be assumed that the following generalization 
is reasonable for all (𝑖௞ + 𝑤௞) 

డ௛ೖశభ

డ௪ೖ
| ௛ೖୀ௛ೖ

∗

௪ೖୀ௪ೖ
∗

= − ቚ
ఊ୼௧

ொ
ቚ 𝐴̅ு,௞(1 + 𝑠𝑔𝑛(𝑖௞ + 𝑤∗)ℎ෠௞

ା)  (26) 

The zero-state hysteresis equation is defined as: 
 If |𝑖௞ + 𝑤௞

 | > 0 then 𝑠௞ାଵ = 𝑠𝑔𝑛(𝑖௞ + 𝑤௞
 ) 

 Else 𝑠௞ାଵ = 𝑠௞. 
If we consider 𝑖௞ + 𝑤௞

 = 0 to be a zero-probability event, 

then 
డ௦ೖశభ

డ௦ೖ
= 0 and 

డ௦ೖశభ

డ௪ೖ
= 0. The ESC-model output is: 

𝑦௞ = 𝑂𝐶𝑉(𝑆𝑜𝐶௞) + 𝑀ℎ௞ + 𝑀଴𝑠௞ + ∑ 𝑅௝𝑖௝,௞௝ + 𝑅଴𝑖௞ + 𝑣௞  (27) 
We can neglect the noise 𝑤௞ previously added to 𝑖௞ because 
this would add correlation between process noise and the 
overall noise present in the measurement, which violates an 
assumption made when deriving the Kalman filter. Then,  

డ௬ೖ

డ௦ೖ
= 𝑀଴ ;

డ௬ೖ

డ௛ೖ
= 𝑀 ;   

డ௬ೖ

డ௜ೕ,ೖ
= −𝑅௝ 

;
డ௬ೖ

డ௩ೖ
= 1  (28) 

and 

                           
డ௬ೖ

డ௭ೖ
|௭ೖୀ௭ೖ

∗ =
డை஼௏(௭ೖ)

డ௭ೖ
|௭ೖୀ௭ೖ

∗           (29) 

which can be approximated from OCV data.  

G. Performance Criteria 

The following performance indices were considered to 
compare the different estimators: 
 Mean Absolute Error (MAE) computed as: 

𝑀𝐴𝐸 = ∑
|௫(௞)ି௫ො(௞)| 

௡
 ௜ୀଵ…௡     (30) 



  

where 𝑥(𝑘) is the real value to estimate, 𝑥ො(𝑘) is the 
estimated signal samples provided by the estimator and 𝑛 
is the number of samples.  

 Root Mean Square Error (RMSE) computed as: 

𝑅𝑀𝑆𝐸 = ට∑ ൫௫(௞)ି௫ො(௞)൯
మ೙

ೖసభ

௡
     (31) 

where 𝑥(𝑘) is the real value to estimate, 𝑥ො(𝑘) is the 
estimated signal samples provided by the estimator. 

 Execution Time (ET) is the time needed for performing 
the computation of the estimation algorithm in seconds. 

IV. SIMULATION RESULTS 

In this section, the estimation algorithms are compared by 
evaluating the performance criteria for the scenario presented 
in Section II.B. The parameters of the baseline EKF are 
included in Table 2 whereas the data-driven policy design is 
further described in the following sections. Initially, the 
original dataset was used and 7200 samples were selected for 
estimator training. The original dataset, with 625 minutes of 
measurements, was then used to evaluate the performance of 
the algorithms in terms of MAE and RMSE. 

Table. 2. Extended Kalman Filter Parameters 

Parameter Value 

𝜎௑ [10ି଺ , 10ି଼,
2 × 10ିସ] 

𝜎ௐ 0.2 

𝜎௏ 0.2 

A. Data-driven estimator design: Phase 1 
The first step of the ML-based estimator design is the 
selection of the initial parameters determining the algorithm. 
The first SoC estimator is designed by considering 75% of 
this initial dataset, composed of 7200 features, as the training 
set and the remaining 25% as the validation dataset. The SVM 
uses Radial Basis activation functions (RBFs) 𝐾  to define the 
Kernel matrix entries Ω௜,௝ as in Eq. (16) such that 

𝐾𝑖(𝑝(𝑘), 𝑝(𝑖)) = 𝑒
ቌ−

ห|𝑝(𝑘)−𝑝(𝑗)|ห2
2

𝜎𝑖
2

ቍ

    (32) 

Ω௜,௝ = 𝑦௜𝑦௝𝐾  ൫𝑥௜ , 𝑥௝൯ = 𝑦௜𝑦௝𝑒
ቌ−

ห|𝑥(𝑖)−𝑥(𝑗)|ห2
2

𝜎𝑖
2

ቍ

  (33) 
and the values of the tuning parameters 𝜎𝑖 for the 
identification algorithm are selected by the PSO approach. 
The goal of this design step is to compute the set of tuning 
parameters permitting to optimize the estimation performance 
while considering the full original dataset.  
 

Table. 3. Data-driven estimator design: Phase 1 Optimized Parameters 
 

Parameter Value 

Sigma Values [1306.7763, 8218.1091, 7447.8777, 17.7607, 
4626.9248] 

LambdaX Values [5237.4766, 1009.6543, 8388.2786, 
152.8805] 

LambdaY Values [7185.4658, 152.8805] 

 
The set of parameters in Table 3 shows the settings obtained 
by using the PSO for tuning the LS-SVM estimator. The 

performance achieved by the data-driven estimator in Table 
4, shows the estimation indices found by testing the algorithm 
on the initial complete dataset presented in Section II together 
with the averaged execution time evaluated during this test. 
 

Table. 4. Data-driven estimator design: Phase 1 Estimation Performance 
 

Performance Index Value 

RMSE 4.432 × 10ିଷ 

MAE 2.18 × 10ିଷ 

ET [s] 6.05 × 10ିହ  

B. Data-driven estimator design: Phase 2 
In the second stage of the design, the pruning procedure was 
applied to the dataset using the optimized settings computed 
in Phase 1.  The result shown in Figure 4 reveals the average 
fitting error with respect to size of the selected dataset, 
together with the normalized averaged execution time.  

 
 

Fig. 4. Data-driven estimator design: Phase 2 Pruning Analysis 
 
This analysis of results enables one to evaluate the trade-off 
between fitting error increase and related execution time 
reduction. From this analysis, the size of the pruned dataset to 
be used in the following Phase 3 is selected to be composed 
of 5000 samples. This should reduce the computational 
burden by 50%, with an expected 16% increase of the fitting 
error. 

C. Data-driven estimator design: Phase 3 
In the third and final stage of development of the data-driven 
estimator the selected subset of data was considered for 
performing a refinement of the calibration parameters of the 
LS-SVM by the PSO approach. By adjusting the estimator 
calibration parameters, it is possible to improve the 
performance of the algorithm with respect to the expected 
performance estimated in the previous Phase 2 during the 
pruning analysis. On the other hand, because only the dataset 
size affects the computational complexity of the algorithm 
(and related memory footprint), the expected complexity of 
the developed algorithm is the same as in Phase 2.  
 
The optimized parameters are given in Table 5 and the 
performance indices of this refined data-driven estimator 
evaluated with respect to the initial dataset in Section II are 
given in Table 6. 
 



  

Table. 5. Data-driven estimator design: Phase 3 Optimized Parameters 
 

Parameter Value 

Sigma Values [8356. 1163, 8832.2549, 8305.5998, 
267.1314, 2053.1127] 

LambdaX Values 9792.1244 

LambdaY Values 9638.2447 

 

After the application of the pruning procedure and the PSO-
based refinement, the data-driven estimator reduces the ET by 
58%, in line with the pruning analysis. In terms of 
performance, this refined estimator shows a slight reduction 
of the estimation performance by 11% in terms of RMSE and 
by 17% for the MAE index.   
 
Table. 6. Data-driven estimator design: Phase 3 Estimation Performance 
 

Performance Index Value 

RMSE 4.7922 × 10ିଷ 

MAE 2.9855 × 10ିଷ 

ET [s] 2.55 × 10ିହ  

D. Performance Comparison 
In this section, the estimation performance of the data-driven 
estimator is compared against that of the baseline EKF. Figure 
5 and Figure 6 show the estimators’ performance for the 
scenario considered (with the SoC varying from 100% to 
50%, and from 50% to 0%, respectively), and Table 5 collects 
the related performance indices. Both images refer to the 
same test, split into two different figures to increase the 
readability of the results. 
 
As shown in Figure 5, in the first half of the test the data-
driven estimator provides superior performance whereas the 
EKF tends to perform better in the second part of the scenario, 
as shown in Figure 6. The performance provided over the 
complete scenario given in Table 7 shows how the data-driven 
estimator gives an improvement of 7% in terms of RMSE and 
39% for the MAE, compared with the EKF. This is possible 
due to the capability of data driven methods to learn and 
reflect real-world system behavior overcoming the need of an 
accurate model of the plant. 

V. CONCLUSIONS 

The problem of battery State-of-Charge (SoC) estimation was 
considered, and an estimation method developed exploiting 
the capabilities of data-driven Machine Learning (ML) 
techniques. The proposed approach can be used for more 
general applications. It combines a Least-Squares Support 
Vector Machine (LS-SVM) identification technique with a 
Pruning Dataset Selection procedure and uses the meta-
heuristic Particle Swarm Optimization (PSO) method. An 
automatic procedure that involves combining these 
techniques has been developed and implemented within the 
Data-driven Estimator Design Tool. This was developed to 
reduce effort in the battery estimation studies. The estimator 
approach achieves good performance with limited 
computational complexity. The performance of the algorithm 
was compared against a baseline EKF estimator. The results 

demonstrate the ability of the approach to develop an 
estimator able to overcome some of the limitations of model-
based methods whilst considering the computational burden. 
Future research will consider the integration of an online 
adaptation procedure within the LS-SVM policy, and 
application trials of the estimator and design tool. 

 
Fig. 5. Estimators’ performance comparison:  SoC interval [0, 50] % 

 

 
Fig. 6. Estimators’ performance comparison:  SoC interval [50, 100] % 

 
Table. 7. Estimation Performance Comparison 

 
Estimator RMSE MAE 

EKF 5.1049 × 10ିଷ 4.8496 × 10ିଷ 

LS-SVM 4.7922 × 10ିଷ 2.9855 × 10ିଷ 
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