



Abstract— The design and development of a data-driven
algorithm for battery State-of-Charge estimation is presented.
The estimation of battery SoC is important in the development
of Battery Management Systems. The proposed approach
exploits the Least-Squares Support Vector Machine data-driven
estimation paradigm and statistical methods. The algorithm’s
computational complexity is reduced by using a data pruning
procedure. The approach is validated using a simulation model
of the battery and an Estimator Design Tool in MATLAB
software which provides a user-friendly interface for the
different algorithms that may be used in the estimator design.
The approach is applicable to a wide range of applications.

Keywords: Battery Management System, Least-Squares
Support Vector Machine, State-of-Charge Estimator.

I. INTRODUCTION

Hybrid vehicles with electric power zero-emissions
powertrains have been widely studied in the automotive
systems. These vehicles involve battery energy storage
supplying the vehicle powertrain (in pure battery electric
vehicles) in conjunction with other power sources e.g., Fuel
Cells (in some hybrid electric vehicles) [1]. The green
revolution highlights the importance of batteries and related
battery management systems (BMSs) in automotive and in
other transport applications [2]. A modern BMS is has several
control layers for different tasks, e.g. battery cell balancing [3].

The development of the estimators is a critical aspect of
BMS design. These algorithms must compute the estimate of
battery characteristics that are unmeasurable, e.g. for the
battery equivalent capacity; the battery resistance, or the
battery State-of-Charge (SoC) [4]. Several methods can be
used for developing these estimators. Voltage-based and
Current-based are the classical estimation methods used.
Among advanced techniques, Kalman Filter (KF)-based
methods have been widely used for BMS estimator design [5].

The limitations of these techniques are related to the
dependency of the estimator performance on the ability of the
user to specify the model structure and parameters for the
actual battery system. Due to the large variety of battery
technologies, architectures, and the uncertainties in the system
parameters, the design of a BMS estimator is a complex and
time-consuming task [6]. Several data-driven techniques and
combined data-driven and model-based methods have been
proposed in the last few years to solve the BMS SoC
estimation problem. These papers considered Neural Network

Luca Cavanini is with Industrial Systems and Control Ltd, Glasgow, UK (e-
mail: l.cavanini@isc-ltd.com) and Università Politecnica delle Marche,
Ancona, Italy (corresponding author, phone: 0039-071-2204314; fax: 0039-
071-2204315; e-mail: l.cavanini@univpm.it).

(NN)-based estimators, Fuzzy Logic inspired solutions, and
KF-based algorithms, combining ML and models-based
approaches [7].

In the following a purely data-driven design methodology
is proposed to perform general battery estimation and the focus
is on the battery State-of-Charge (SoC) estimation problem. It
combines the modern data-driven Least Squares Support
Vector Machine (LS-SVM) paradigm with a pruning
procedure for more efficient computations. In addition, it uses
the Particle Swarm Optimization (PSO) method for tuning the
algorithm. The LS-SVM is used in a Supervised Learning ML
framework for developing the algorithm [8]. The Pruning
method selects the most important samples from the original
training dataset. This reduces the computational complexity
and the memory footprint of the algorithm whilst maintaining
satisfactory estimation performance [9].

The dataset considered has been collected by emulating a
real battery using an Enhanced Self-Correcting (ESC) battery
simulation model. A baseline estimator has also been
developed for comparison with a model-based approach. This
is an Extended Kalman Filter (EKF) based on the battery ESC
model. The estimators were compared in a simulation, in terms
of performance and computational complexity, using a set of
computed performance indices.

The paper is structured as follows. Section II describes the
battery model and related dataset, Section III presents the
baseline and data-driven estimation methods, Section IV
reports test results, and Section V concludes the paper.

II. BATTERY MODEL AND DATASET

The battery State-of-Charge model, and the dataset collected
from the simulated system are now presented.

A. Battery State-of-Charge

The SoC of the i-th battery cell is defined as:

𝑆𝑜𝐶௜(𝑘) =
 ఏ(௞)ିఏబ%

ఏభబబ%ିఏబ%
 (1)

where 𝜃(𝑘) is the average lithium concentration
stoichiometry at a discrete time 𝑘 defined as:

𝜃(𝑘) =
௖ೞ,ೌೡ೒,ೖ

௖ೞ,೘ೌೣ
 (2)

This is intended to remain between 0% and 100%, although
it is possible to violate these limits in an over-discharge or
over-charge situation [11]. The issue here is that there is

Pawel Majecki, Mike J. Grimble and Gerrit M. van der Molen are with with
Industrial Systems and Control Ltd, Glasgow, UK (e-mail: {pawel,
m.grimble, gerrit}@isc-ltd.com). Mike J. Grimble is also with University of
Strathclyde, Glasgow, UK (e-mail: m.grimble@isc-ltd.com).

Battery State-of-Charge Estimator Design based on The Least-
Square Support Vector Machine

Luca Cavanini, Pawel Majecki, Mike J. Grimble, Gerrit M. van der Molen

presently no direct way to measure the concentrations that
would allow us to calculate the stoichiometries and from them
the SoC. It is therefore necessary to infer or estimate SoC
using only the measurements of cell terminal voltage, current,
and temperature. Although the cell Open-Circuit Voltage
(OCV) is closely related to the state of charge, the terminal
voltage under load is a poor predictor of open-circuit voltage
unless the cell is in electrochemical equilibrium (and
hysteresis is negligible).

B. Battery Model

A high-fidelity model of a battery cell, based on reference
[12], has been used to simulate a real battery and generate the
dataset required for the data-driven algorithm training. This is
the ESC model, referred to above. It represents the OCV as a
function of SoC, linear polarization, diffusion voltage, SoC-
varying hysteresis, and instantaneous hysteresis [13]. The
ESC model shown in Fig.1 is described in the following.

Fig. 1. Battery Cell Model

The battery SoC is modelled as:

𝑆𝑜𝐶(𝑘 + 1) = 𝑆𝑜𝐶(𝑘) − 𝜂(𝑘)𝑖(𝑘)𝛥𝑡/𝑄 (3)
where 𝜂(𝑘) is the unitless cell coulombic efficiency at time 𝑘,
𝑖(𝑘) is the input current at time 𝑘, 𝛥𝑡 is the sample period,
and 𝑄 is the cell's total capacity. SoC is unitless, so e.g. if
𝑖(𝑘) is measured in amperes and 𝛥𝑡 is measured in seconds,
then 𝑄 must be expressed in ampere-seconds. The Diffusion-
Resistor current is the current flowing through the resistor 𝑅ଵ
in the resistor-capacitor network and is modelled as:

𝑖ோభ
(𝑘 + 1) = 𝑒

ቀି
೩೟

ೃభ಴భ
ቁ
𝑖ோభ

(𝑘) + ൬1 − 𝑒
ቀି

೩೟

ೃభ಴భ
ቁ
൰ 𝑖(𝑘) (4)

This model captures the slow time constants of diffusion
processes occurring within the cell. The hysteresis voltage is
modelled as a hysteresis function ℎ

ℎ(𝑘 + 1) = 𝑎௛(𝑘)ℎ(𝑘) + (𝑎௛(𝑘) − 1)𝑠𝑔𝑛൫𝑖(𝑘)൯ (5)

where 𝑎௛(𝑘) = 𝑒
ቀିቚ

ആ(ೖ)೔(ೖ)ം೩೟

ೂ
ቚቁ

. In this equation, the constant
γ adjusts how quickly the hysteresis state changes with a
change in cell SoC and 𝑠𝑔𝑛൫𝑖(𝑘)൯ is 1 if its input is positive,
−1 if negative, and 0 otherwise. This ESC model describes the
SoC evolution and all dynamic effects. The ESC output
equation computes the voltage 𝑣(𝑘) at discrete-time index 𝑘
as:
𝑣(𝑘) = 𝑂𝐶𝑉൫𝑆𝑜𝐶(𝑘)൯ + 𝑀ℎ(𝑘) + 𝑀଴𝑠(𝑘) +

− ∑ 𝑅௜𝑖ோ೔
(𝑘) − 𝑅଴𝑖(𝑘) (6)

where 𝑂𝐶𝑉(𝑆𝑜𝐶(𝑘)) is the 𝑂𝐶𝑉as a function of 𝑆𝑜𝐶, 𝑀 is
the maximum absolute analog hysteresis voltage at this
temperature, 𝑀଴ is the instantaneous hysteresis voltage, and

𝑅଴ is the pure ohmic resistance of the cell. The battery
parameters are given in Table 1 below [13].

C. Battery Dataset

The training data was generated from the ESC model and
consisted of the battery cell voltage 𝑣, current 𝑖, and the 𝑆𝑜𝐶
output signal. These signals are shown in Figure 2. The
scenario represents a battery cell discharging from an initial
value of 𝑆𝑜𝐶(𝑡଴) = 100% to 𝑆𝑜𝐶൫𝑡௙൯ = 0%. The dataset
contains 3700 data points.

Table. 1. Battery Cell Model Specifications

Parameter Value Unit

𝐶ଵ 38 k𝐹

𝑅ଵ 0.0158 𝛺

𝑅଴ 0.0082 𝛺

Fig. 2. Dataset signals: battery cell voltage (top), battery current (center),
and SoC (bottom)

III. BATTERY STATE-OF-CHARGE ESTIMATORS

The proposed data driven SoC estimator design approach is
presented below and the baseline estimation algorithm for
comparison purposes is described.

A. Least-Squares Support Vector Machine

The LS-SVM is derived from a standard SVM and is often
used for optimal control of nonlinear Karsh-Kuhn-Tucker
(KKT) systems for classification and regression. Given a set
of data 𝐷 = {(𝑥ଵ, 𝑦ଵ), … , (𝑥௡ , 𝑦௡)}, with 𝑥௜ ∈ ℝ௣ and 𝑦௜ ∈ ℝ,
the LS-SVM finds a nonlinear regression function:

𝑦(𝑥) = 𝑤்𝜙(𝑥) + 𝑏 (7)
by solving the optimization problem:

min 𝐽(𝑤, 𝜉)௪,క =
ଵ

ଶ
𝑤்𝑤 +

ఊ

ଶ
∑ 𝜉௞

ே
௞ୀଵ

ଶ
 (8)

such that

𝑦(𝑥௜) = 𝑤்𝜙(𝑥௜) + 𝑏 + 𝜉௜. (9)
This formulation of the problem consists of equality
constraints instead of inequality constraints, such that the
related Lagrange function is defined as:
𝐿(𝑤, 𝑏, 𝜉, 𝛼) = 𝐽(𝑤, 𝑏, 𝜉) − ∑ 𝛼௜{𝑤்𝜙(𝑥௜) + 𝑏 − 𝑦௜ + 𝜉௜}ே

௜ୀଵ (10)
where the Lagrange multipliers 𝛼௜ represent the solution of
the dual problem and can be computed by solving the
following system of equations:

డ௅

డ௪
= 0 → 𝑤 = ∑ 𝛼௜

ே
௜ୀଵ 𝜙(𝑥௜) (11)

డ௅

డ௕
= 0 → ∑ 𝛼௜

ே
௜ୀଵ = 0 (12)

డ௅

డక೔
= 0 → 𝛾 − 𝛼௜ = 0 (13)

డ௅

డఈ೔
= 0 → 𝑤𝑇𝜙(𝑥௜) + 𝑏 − 𝑦௜ + 𝜉௜ = 0 (14)

The solution of the system as in Eq. (11) - Eq. (14) is given
by the following matrix equation:

ቀΩ +
ଵ

ஓ
I ቁ α = 𝑌 (15)

with 𝑌 = [𝑦ଵ, … , 𝑦ே]′, 𝛼 = [𝛼ଵ, … , 𝛼ே]′, and where the kernel
matrix Ω entries are computed by

Ω௜,௝ = 𝑦௜𝑦௝𝜙(𝑥௜)்𝜙൫𝑥௝൯ = 𝑦௜𝑦௝𝐾(𝑥௜ , 𝑥௝) (16)
The fitting function, representing the LS-SVM regression
output is then:

𝑦(𝑥) = ∑ 𝛼௜𝐾(𝑥௜ , 𝑥)ே
௜ୀଵ (17)

The Lagrangian multipliers 𝛼௜ are the solution of the linear
system Eq. (17), and 𝐾(𝑥௜ , 𝑥) is the selected kernel function.

B. Pruning Procedure

One of the main issues in LS-SVM identification is the size
of the training dataset. The estimate is computed iteratively
by comparing the training dataset information with the
measurements from the real system. There are two issues: (i)
The computational burden increases with the dataset size and
when the training dataset is large, the iterative computation of
the estimate could be prohibitive in real-time or even for
simulation purposes [8]; (ii) To use the LS-SVM on real
systems, the training data must be stored in memory, reducing
the possibility of porting the algorithm onto hardware with
limited resources [9]. Because the LS-SVM is a kernel
method, the most significant features of the training dataset
cannot be selected a priori, but can be only evaluated after the
training of the algorithm. A possible solution for reducing the
training dataset size, reducing computational burden and data
storage memory, is given by the so-called pruning method.
This method involves iteratively performing a LS-SVM
identification, reducing the size of the training dataset at each
iteration, by gradually omitting the training data related to the
less significant Lagrangian multipliers. This method allows
one to define a priori the maximum size of the data subset to
consider, or equivalently, the acceptable value of the
identification performance degradation [14].

The pruning procedure is performed by the following steps:
(1). Considering the original dataset of size 𝑁, train the LS-

SVM.
(2). Remove small number of points (e.g., ∆𝑁 = 5% of 𝑁)

corresponding to the smallest values in the |𝛼௞|
spectrum.

(3). Train the LS-SVM with the new reduced dataset. Go to
point 2 until the identification performance degradation
threshold is exceeded.

C. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is a global
optimization algorithm, inspired by birds’ flocking or fish
schooling for the solution of nonlinear, nonconvex, or
combinatorial optimization problems [10]. The PSO
optimization uses evolutionary techniques for finding the
global minimum of a function. The solution to the optimization
problem is obtained through a random search equipped with
swarm intelligence. The initial ideas on particle swarms of
Kennedy and Eberhart were aimed at using computational
intelligence by exploiting simple analogues of social
interaction, rather than purely individual cognitive abilities
[10]. In this problem PSO is used to optimize the tuning
parameters that calibrate the LS-SVM trained on the selected
dataset. In this approach several simple entities (the particles),
are placed in the search space of some problem or function,
and each evaluates the objective function at its current
location. Every particle in a swarm has three 𝑁-dimensional
vectors, where 𝑁 is the dimensionality of the search space.
These are the current position 𝑥௜, the previous best position 𝑝௜ ,
and the velocity 𝑣௜. The current position 𝑥௜can be considered
as a set of coordinates describing a point in space. On each
iteration of the algorithm, the current position is evaluated as
a problem solution. If that position is better than any that has
been found so far, then the coordinates are stored in the second
vector, 𝑝௜ . The value of the best function result so far is stored
in a variable that can be called 𝑝௣௕,௜, for comparison on later
iterations. The goal is to keep finding better positions and
updating 𝑝௜ and 𝑝௣௕,௜. New points are chosen by adding vi

coordinates to 𝑥௜, and the algorithm operates by adjusting 𝑣௜,
which can effectively be seen as a step size. The structure of
the PSO algorithm is described by the following steps:

(1). The population is initialized with random initial positions
and velocities on the research space of dimension 𝑁.

(2). The desired fitness function in 𝑁 variables is evaluated
for each particle.

(3). Compare the fitness function values of each particle in
the swarm to find the best particle.

(4). Identify the particles in the neighborhood of the best
particle by indexing the swarm.

(5). Change the velocity and position of each particle
according to the updated law.

(6). Check the stopping criteria: this stops the algorithm if
satisfied or iterates from step 2 if not satisfied.

The basic PSO described above has a small number of
parameters that need to be fixed. One parameter is the size of
the population. This is often set empirically based on the
dimensionality and the perceived difficulty of a problem. The
role of the PSO is to automatically compute the best set of
calibration parameters for the LS-SVM to minimize the
estimated SoC tracking error.

D. Data-driven Estimator Design Procedure

The data-driven estimator design is based on ML and
statistical methods. To limit the computational complexity,
the following design procedure was defined:
 Phase 1: Perform a first LS-SVM training based on PSO

and the original training dataset to compute estimator
calibration parameters.

 Phase 2: Perform the Pruning Analysis with the
calibration parameters computed in Phase 1 and select the
size of the pruned dataset to be considered for the final
estimator training.

 Phase 3: Perform the final LS-SVM training.

The proposed design approach has been undertaken using
design software presented in the following section.

E. Data-driven Estimator Design Tool

The design approach proposed in the previous section is
implemented in a Data-driven Estimator Design Tool
developed by Industrial Systems and Control Ltd., to simplify
the time-consuming development process. The software
generates the data-driven estimator by exploiting the
capabilities of ML techniques. The Graphical User Interface
of the software is shown in Figure 3. The Design Tool allows
the adjustment of the tuning parameters for the LS-SVM
training and the pruning procedure. The GUI provides
feedback to the user in terms of estimation/pruning graphical
results and identification of performance statistics. As shown
in the GUI figure, the Design Tool includes a set of common
data manipulation methods e.g., data normalization or
Entropy-based Analysis.

Fig. 3. Data-Driven Estimator Design Tool GUI

F. Baseline Estimator

An Extended Kalman Filter (EKF) is the baseline estimator to
be used for comparison purposes. The first step for
developing an EKF for battery SoC estimation is to define the
state-space matrices locally describing the model over
instantaneous operating conditions. Suppose that the process
noise represents the current-sensor measurement error and
that the true cell current is 𝑖௞ + 𝑤௞, but that we measure 𝑖௞
only. Also, assume we can simplify the model with coulombic
efficiency 𝜂௞ = 1, and allow the adaptivity of the EKF to
handle the small error introduced by this assumption. Using
the notation 𝑆𝑜𝐶௞ = 𝑆𝑜𝐶(𝑘), the SoC can be written as:

𝑆𝑜𝐶௞ାଵ = 𝑆𝑜𝐶௞ −
୼௧

ொ
(𝑖௞ + 𝑤௞) (18)

and the two derivatives needed are:
డௌ௢஼ೖశభ

డௌ௢஼ೖ
|ௌ௢஼ೖୀௌ௢஼ೖ

∗ = 1;
డௌ௢ ೖశభ

డ௪ೖ
|ௌ௢஼ೖୀௌ௢஼ೖ

∗ = −
୼௧

ொ
 (19)

By defining 𝜏௝ = 𝑒
ቆ

౴೟

ೃೕ಴ೕ
ቇ

 then:

𝑖ோ,௞ାଵ = ൥
𝜏ଵ 0 0
0 𝜏 ଶ 0
0 0 …

൩ 𝑖ோ,௞ + ൥
1 − 𝜏ଵ

1 − 𝜏ଶ

…
൩ (𝑖௞ + 𝑤௞) (20)

Then the state equation matrices are computed as:
డ௜ೃ,ೖశభ

డோೖ
|ோೖୀோೖ

∗ = 𝐴ோ஼ ;
డ௜ೃ,ೖశభ

డ௪ೖ
|௪ೖୀ௪ೖ

∗ = 𝐵ோ஼ (21)

By defining 𝐴ு,௞ = 𝑒
൬ି

൫೔ೖశೢೖ൯ം౴೟

ೂ
൰
 then the hysteresis state

equation can be written as:
ℎ௞ାଵ = 𝐴ு,௞ℎ௞ + (𝐴ு,௞ − 1)𝑠𝑔𝑛(𝑖௞ + 𝑤௞). (22)

By taking the partial derivative with respect to the state and
evaluating it at the setpoint 𝑝௞

డ௛ೖశభ

డ௛ೖ
|௛ೖୀ௛ೖ

∗ = 𝑒
൬ି

൫೔ೖశೢೖ൯ം౴೟

ೂ
൰

= 𝐴̅ு,௞ (23)

We find
డ௛ೖశభ

డ௪ೖ
 as follows:

 If (𝑖௞ + 𝑤௞) > 0 then

డ௛ೖశభ

డ௪ೖ
|௛ೖୀ௛ೖ

∗ = − ቚ
ఊ୼௧

ொ
ቚ 𝑒

ቀିቚ
ം౴೟

ೂ
ቚ |(௜ೖା௪ೖ)| ቁ

(1 + ℎ௞) (24)

 If (𝑖௞ + 𝑤௞) < 0 then:
డ௛ೖశభ

డ௪ೖ
|௛ೖୀ௛ೖ

∗ = − ቚ
ఊ୼௧

ொ
ቚ 𝑒

ቀିቚ
ം౴೟

ೂ
ቚ |(௜ೖା௪ೖ)| ቁ

(1 − ℎ௞) (25)

While evaluating the Taylor-series linearization at the
setpoint it may be assumed that the following generalization
is reasonable for all (𝑖௞ + 𝑤௞)

డ௛ೖశభ

డ௪ೖ
| ௛ೖୀ௛ೖ

∗

௪ೖୀ௪ೖ
∗

= − ቚ
ఊ୼௧

ொ
ቚ 𝐴̅ு,௞(1 + 𝑠𝑔𝑛(𝑖௞ + 𝑤∗)ℎ෠௞

ା) (26)

The zero-state hysteresis equation is defined as:
 If |𝑖௞ + 𝑤௞

 | > 0 then 𝑠௞ାଵ = 𝑠𝑔𝑛(𝑖௞ + 𝑤௞
)

 Else 𝑠௞ାଵ = 𝑠௞.
If we consider 𝑖௞ + 𝑤௞

 = 0 to be a zero-probability event,

then
డ௦ೖశభ

డ௦ೖ
= 0 and

డ௦ೖశభ

డ௪ೖ
= 0. The ESC-model output is:

𝑦௞ = 𝑂𝐶𝑉(𝑆𝑜𝐶௞) + 𝑀ℎ௞ + 𝑀଴𝑠௞ + ∑ 𝑅௝𝑖௝,௞௝ + 𝑅଴𝑖௞ + 𝑣௞ (27)
We can neglect the noise 𝑤௞ previously added to 𝑖௞ because
this would add correlation between process noise and the
overall noise present in the measurement, which violates an
assumption made when deriving the Kalman filter. Then,

డ௬ೖ

డ௦ೖ
= 𝑀଴ ;

డ௬ೖ

డ௛ೖ
= 𝑀 ;

డ௬ೖ

డ௜ೕ,ೖ
= −𝑅௝

;
డ௬ೖ

డ௩ೖ
= 1 (28)

and

డ௬ೖ

డ௭ೖ
|௭ೖୀ௭ೖ

∗ =
డை஼௏(௭ೖ)

డ௭ೖ
|௭ೖୀ௭ೖ

∗ (29)

which can be approximated from OCV data.

G. Performance Criteria

The following performance indices were considered to
compare the different estimators:
 Mean Absolute Error (MAE) computed as:

𝑀𝐴𝐸 = ∑
|௫(௞)ି௫ො(௞)|

௡
 ௜ୀଵ…௡ (30)

where 𝑥(𝑘) is the real value to estimate, 𝑥ො(𝑘) is the
estimated signal samples provided by the estimator and 𝑛
is the number of samples.

 Root Mean Square Error (RMSE) computed as:

𝑅𝑀𝑆𝐸 = ට∑ ൫௫(௞)ି௫ො(௞)൯
మ೙

ೖసభ

௡
 (31)

where 𝑥(𝑘) is the real value to estimate, 𝑥ො(𝑘) is the
estimated signal samples provided by the estimator.

 Execution Time (ET) is the time needed for performing
the computation of the estimation algorithm in seconds.

IV. SIMULATION RESULTS

In this section, the estimation algorithms are compared by
evaluating the performance criteria for the scenario presented
in Section II.B. The parameters of the baseline EKF are
included in Table 2 whereas the data-driven policy design is
further described in the following sections. Initially, the
original dataset was used and 7200 samples were selected for
estimator training. The original dataset, with 625 minutes of
measurements, was then used to evaluate the performance of
the algorithms in terms of MAE and RMSE.

Table. 2. Extended Kalman Filter Parameters

Parameter Value

𝜎௑ [10ି଺ , 10ି଼,
2 × 10ିସ]

𝜎ௐ 0.2

𝜎௏ 0.2

A. Data-driven estimator design: Phase 1
The first step of the ML-based estimator design is the
selection of the initial parameters determining the algorithm.
The first SoC estimator is designed by considering 75% of
this initial dataset, composed of 7200 features, as the training
set and the remaining 25% as the validation dataset. The SVM
uses Radial Basis activation functions (RBFs) 𝐾 to define the
Kernel matrix entries Ω௜,௝ as in Eq. (16) such that

𝐾𝑖(𝑝(𝑘), 𝑝(𝑖)) = 𝑒
ቌ−

ห|𝑝(𝑘)−𝑝(𝑗)|ห2
2

𝜎𝑖
2

ቍ

 (32)

Ω௜,௝ = 𝑦௜𝑦௝𝐾 ൫𝑥௜ , 𝑥௝൯ = 𝑦௜𝑦௝𝑒
ቌ−

ห|𝑥(𝑖)−𝑥(𝑗)|ห2
2

𝜎𝑖
2

ቍ

 (33)
and the values of the tuning parameters 𝜎𝑖 for the
identification algorithm are selected by the PSO approach.
The goal of this design step is to compute the set of tuning
parameters permitting to optimize the estimation performance
while considering the full original dataset.

Table. 3. Data-driven estimator design: Phase 1 Optimized Parameters

Parameter Value

Sigma Values [1306.7763, 8218.1091, 7447.8777, 17.7607,
4626.9248]

LambdaX Values [5237.4766, 1009.6543, 8388.2786,
152.8805]

LambdaY Values [7185.4658, 152.8805]

The set of parameters in Table 3 shows the settings obtained
by using the PSO for tuning the LS-SVM estimator. The

performance achieved by the data-driven estimator in Table
4, shows the estimation indices found by testing the algorithm
on the initial complete dataset presented in Section II together
with the averaged execution time evaluated during this test.

Table. 4. Data-driven estimator design: Phase 1 Estimation Performance

Performance Index Value

RMSE 4.432 × 10ିଷ

MAE 2.18 × 10ିଷ

ET [s] 6.05 × 10ିହ

B. Data-driven estimator design: Phase 2
In the second stage of the design, the pruning procedure was
applied to the dataset using the optimized settings computed
in Phase 1. The result shown in Figure 4 reveals the average
fitting error with respect to size of the selected dataset,
together with the normalized averaged execution time.

Fig. 4. Data-driven estimator design: Phase 2 Pruning Analysis

This analysis of results enables one to evaluate the trade-off
between fitting error increase and related execution time
reduction. From this analysis, the size of the pruned dataset to
be used in the following Phase 3 is selected to be composed
of 5000 samples. This should reduce the computational
burden by 50%, with an expected 16% increase of the fitting
error.

C. Data-driven estimator design: Phase 3
In the third and final stage of development of the data-driven
estimator the selected subset of data was considered for
performing a refinement of the calibration parameters of the
LS-SVM by the PSO approach. By adjusting the estimator
calibration parameters, it is possible to improve the
performance of the algorithm with respect to the expected
performance estimated in the previous Phase 2 during the
pruning analysis. On the other hand, because only the dataset
size affects the computational complexity of the algorithm
(and related memory footprint), the expected complexity of
the developed algorithm is the same as in Phase 2.

The optimized parameters are given in Table 5 and the
performance indices of this refined data-driven estimator
evaluated with respect to the initial dataset in Section II are
given in Table 6.

Table. 5. Data-driven estimator design: Phase 3 Optimized Parameters

Parameter Value

Sigma Values [8356. 1163, 8832.2549, 8305.5998,
267.1314, 2053.1127]

LambdaX Values 9792.1244

LambdaY Values 9638.2447

After the application of the pruning procedure and the PSO-
based refinement, the data-driven estimator reduces the ET by
58%, in line with the pruning analysis. In terms of
performance, this refined estimator shows a slight reduction
of the estimation performance by 11% in terms of RMSE and
by 17% for the MAE index.

Table. 6. Data-driven estimator design: Phase 3 Estimation Performance

Performance Index Value

RMSE 4.7922 × 10ିଷ

MAE 2.9855 × 10ିଷ

ET [s] 2.55 × 10ିହ

D. Performance Comparison
In this section, the estimation performance of the data-driven
estimator is compared against that of the baseline EKF. Figure
5 and Figure 6 show the estimators’ performance for the
scenario considered (with the SoC varying from 100% to
50%, and from 50% to 0%, respectively), and Table 5 collects
the related performance indices. Both images refer to the
same test, split into two different figures to increase the
readability of the results.

As shown in Figure 5, in the first half of the test the data-
driven estimator provides superior performance whereas the
EKF tends to perform better in the second part of the scenario,
as shown in Figure 6. The performance provided over the
complete scenario given in Table 7 shows how the data-driven
estimator gives an improvement of 7% in terms of RMSE and
39% for the MAE, compared with the EKF. This is possible
due to the capability of data driven methods to learn and
reflect real-world system behavior overcoming the need of an
accurate model of the plant.

V. CONCLUSIONS

The problem of battery State-of-Charge (SoC) estimation was
considered, and an estimation method developed exploiting
the capabilities of data-driven Machine Learning (ML)
techniques. The proposed approach can be used for more
general applications. It combines a Least-Squares Support
Vector Machine (LS-SVM) identification technique with a
Pruning Dataset Selection procedure and uses the meta-
heuristic Particle Swarm Optimization (PSO) method. An
automatic procedure that involves combining these
techniques has been developed and implemented within the
Data-driven Estimator Design Tool. This was developed to
reduce effort in the battery estimation studies. The estimator
approach achieves good performance with limited
computational complexity. The performance of the algorithm
was compared against a baseline EKF estimator. The results

demonstrate the ability of the approach to develop an
estimator able to overcome some of the limitations of model-
based methods whilst considering the computational burden.
Future research will consider the integration of an online
adaptation procedure within the LS-SVM policy, and
application trials of the estimator and design tool.

Fig. 5. Estimators’ performance comparison: SoC interval [0, 50] %

Fig. 6. Estimators’ performance comparison: SoC interval [50, 100] %

Table. 7. Estimation Performance Comparison

Estimator RMSE MAE

EKF 5.1049 × 10ିଷ 4.8496 × 10ିଷ

LS-SVM 4.7922 × 10ିଷ 2.9855 × 10ିଷ

REFERENCES
[1] Tran, D. D., Vafaeipour, M., El Baghdadi, M., Barrero, R., Van

Mierlo, J., & Hegazy, O. , “Thorough state-of-the-art analysis of
electric and hybrid vehicle powertrains: Topologies and integrated
energy management strategies.,” Renewable and Sustainable Energy
Reviews, 2020.

[2] Wang, Y., Tian, J., Sun, Z., Wang, L., Xu, R., Li, M., & Chen, Z., “A
comprehensive review of battery modeling and state estimation
approaches for advanced battery management systems.,” Renewable
and Sustainable Energy Reviews, 2020.

[3] Gabbar, H. A., Othman, A. M., & Abdussami, M. R., “Review of
battery management systems (BMS) development and industrial
standards,” Technologies, 2021.

[4] Ali, M. U., Zafar, A., Nengroo, S. H., Hussain, S., Junaid Alvi, M., &
Kim, H. J. , “owards a smarter battery management system for electric
vehicle applications: A critical review of lithium-ion battery state of
charge estimation,” Energies, 2019.

[5] Shrivastava, P., Soon, T. K., Idris, M. Y. I. B., & Mekhilef, S.,
“Overview of model-based online state-of-charge estimation using
Kalman filter family for lithium-ion batteries,” Renewable and
Sustainable Energy Reviews, 2019.

[6] Lipu, M. H., Hannan, M. A., Hussain, A., Ayob, A., Saad, M. H.,
Karim, T. F., & How, D. N. , “ Data-driven state of charge estimation
of lithium-ion batteries,” Algorithms, implementation factors,
limitations and future trends, 2020.

[7] Hu, X., Feng, F., Liu, K., Zhang, L., Xie, J., & Liu, B. , “State
estimation for advanced battery management: Key challenges and
future trends,” Renewable and Sustainable Energy Reviews, 2019.

[8] Cavanini, L., Ferracuti, F., Longhi, S., Marchegiani, E., & Monteriù,
A., “Sparse approximation of ls-svm for lpv-arx model identification:
Application to a powertrain subsystem,” in IEEE AEIT International
Conference of Electrical and Electronic Technologies for Automotive
(AEIT AUTOMOTIVE), 2020.

[9] Cavanini, L., Ferracuti, F., Longhi, S., & Monteriù, A. , “ Ls-svm for
lpv-arx identification: Efficient online update by low-rank matrix
approximation,” in IEEE International conference on unmanned
aircraft systems (ICUAS), 2020 .

[10] Poli, R., Kennedy, J., & Blackwell, T., “Particle swarm optimization,”
Swarm intelligence, vol. 1, pp. 33-57, 2007.

[11] Plett, Gregory L., Battery management systems, Volume II:
Equivalent-circuit methods, Artech House, 2015.

[12] Plett, Gregory L., “Battery management system algorithms for HEV
battery state-of-charge and state-of-health estimation.,” Advanced
materials and methods for lithium-ion batteries, pp. 1-25, 2007.

[13] Plett, G. L., Battery management systems, Volume I: Battery
modeling, Artech House, 2015.

[14] Cavanini, L., Ciabattoni, L., Ferracuti, F., Marchegiani, E., &
Monteriù, A., “A comparative study of driver torque demand
prediction methods,” IET Intelligent Transport Systems, 2022.

Acknowledgements: Industrial Systems and Control Ltd., Glasgow
is grateful for the support of the Scottish Enterprise on the Data-
driven Estimation for Battery Systems project, and the University of
Strathclyde for cooperation.

