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of Advanced Control Methods
(reducing engineering costs)

Mike J Grimble
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HOW CAN ADVANCED CONTROL HELP?

Quotation from a famous academic:

“It is our job to generalise and abstract problems in engineering 

otherwise everyone would know what we are talking about”

The gulf between practicing engineers and academics is wide and the
question arises as to whether anything in the great armoury of
mathematical control theory is useful to engineers in industry.

The question is rather similar to the motor mechanic who has shelves
of tools covering many different models, international standards and
possibilities and the answer is probably the same. That is, sometimes
such tools are essential because nothing else will do.
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Why is Advanced Process Control 
Necessary?

Advanced Process control is needed for multivariable systems. There is a natural
limit to what can be achieved with single-loop systems and classical controller
structures. The improvements advanced control can provide include one or more of
the following features:

Improved performance and accuracy.
Greater robustness and reliability
Optimized energy usage
Improved economics through constrained operation
Improved disturbance rejection properties.

Reduced interaction.
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Energy optimization and reduced energy consumption.

Improved product yield 

Reduced environmental impact

Increased capacity 

Improved product quality

Better plant response time

Improved safety and reliability.

Process improvements

Asset utilization

Capacity increases

Quality improvements.

Possible Benefits 
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Improved control structures and tuning

(reducing engineering costs)
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Feedback control systems are needed for the following important reason:

Feedback Control Systems Accounts For Uncertainties in a System

Uncertainties may arise due to the unknown, highly nonlinear and time-varying dynamic 
characteristics of processes and due to unanticipated and unmeasured disturbances.

Advantages of feedback control systems:

• Feedback controller attempts to reject impact of disturbance on a controlled variable.

• Reduces sensitivity of a controlled variable to unmeasured disturbances/process changes.  

Disadvantages of feedback control systems :

• Feedback controller requires measurement (or accurate estimation) of controlled 
variable in order to function properly.

• Feedback controller does not anticipate disturbances that affect controlled variable. It 
only reacts after disturbances have made an impact upon a given controlled variable.

• Inherently stable system can be destabilised by feedback control.

Feedback Control Systems
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Advantage of Feedforward Control Systems:

• Feedforward controller takes corrective action before controlled variable starts 
deviating from its set-point. Ideally, the corrective action will cancel the effects of the 
disturbance so that the controlled variable is not affected by the disturbance.

Disadvantages of Feedforward Control Systems:

• Feedforward control requires disturbances to be measured (or estimated).

• No corrective action is taken by feedforward controller for unmeasured disturbances. 

• Feedforward controller requires presence of a process model.

Even if exact cancellation of measured disturbance is not possible, feedforward control can 
significantly reduce the effects of measured disturbances.

Feedforward control is normally used in combination with feedback control.  Feedback rejects 
impact of any unmeasured disturbances whilst feedforward cancels measured disturbances.

Feedforward Control Systems
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Improved control if used properly

(reducing engineering costs)
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Some Predictive Control Vendor 
Companies Products

Aspentech
• DMCplus
• DMCplus-Model

Honeywell
• Robust MPC Technology (RMPCT)

Adersa
• Predictive Functional Control (PFC)
• Hierarchical Constraint Control (HIECON)
• GLIDE (Identification package)

Emerson - MDC Technology
• SMOC (licensed from Shell)
• Delta V Predict
Predictive Control Limited (Invensys)
• Connoisseur
ABB
• 3d MPC
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Model Predictive Control
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Model Predictive Control

Several types of industrial MPC and DMC is most widely used.
Dynamic Matrix Control (DMC): industrial model-predictive 
control developed by Charlie Cutler (originally at Shell and 
formed DMC Corp in 1984 sold to AspenTech in 1996).
MPC is most popular form of multivariable control.
Handles complex sets of constraints.
Has an optimizer on top of the MPC so that it controls against 
the most profitable set of constraints. This uses incremental 
costs (feed costs, utility costs) and incremental revenues 
(product values).
For distillation example, the incremental cost of steam ($/lb), the 
incremental cost of feed ($/lb), and the incremental value of 
both products ($/lb) is needed.
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Constraints

Physical systems include many constraints:

Physical constraints, such as actuator limits.
Safety constraints, such as rate, temperature 
and pressure limits.
Performance constraints like overshoot and rise 
time.
Unfortunately the best or optimal operating points 
are often near constraints.
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Most Significant Advantages of MPC are Offered:

For high volume processes, such as refineries and high 
volume chemical plants.
For processes with unusual process dynamics or 
significant transport-delays.
For processes where there are significant economic 
benefits by operating closer to constraints.
For processes that have different active constraints 
depending on the product grade, changes in product 
values, summer/winter or day/night operation.
For processes where it is important to have a smooth 
transition to new operating targets.
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Model Predictive Control 
Structures
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Typical Model Predictive Control Structure

Source: Rihab Khalid Al Seyab,Nonlinear Model Predictive Control Using Automatic Differentiation, 
Cranfield University, PhD Thesis, 2006
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Real-Time Optimization (RTO)
RTO solves the following optimization problem: “Given the fixed arrangements 
and sizes of equipment, the quality and cost of feedstock, utilities costs, and 
product specifications, values, and market demands, what are the best operating
conditions to give the most valuable products at the lowest operating costs?” 
(Cutler and Perry).

RTO execution typically involves five main steps:
• Steady state detection
• Data reconciliation
• Parameter estimation
• Optimization
• Send optimum targets to MPC controller.

• RTO can deliver value over an MPC controller when the optimization 
variables have a NL relationship with the profit function and are not currently 
used to control constraints or specifications. 

• Linear MPC controllers do not normally have the capability to determine 
optima for variables that have significantly NL behaviour (see Gattu et al).
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REVIEW OF THE STATUS OF LINEAR MPC APPLICATIONS
(Quote taken from:   G Gattu, S Palavajjhala, and D B Robertson, Bass Rock Consulting, Incorporated)

Linear MPC controllers are now installed on all major units, at most refineries in the US. An MPC controller refers here
to a steady-state Linear Programme (LP) or Quadratic Programme (QP) optimizer, integrated with a linear dynamic controller. 
However, many MPC applications do not perform adequately or deliver the potential benefits of this technology. MPC controllers 
that perform well have the characteristics:

• The scope of the controller covers all key process constraints
• All key equipment, process and product specification constraints are active and are controlled at the limits
• The economic optimizer pushes against the correct combination of constraints
• Dynamic controller performance is good over a wide operating range
• Intervention from operators occurs only to handle rare conditions that were consciously not included in the design

Successful MPC applications that meet the above criteria over their lifespan are surprisingly rare. Some applications are 
implemented poorly and others have degraded because of inadequate maintenance, to where benefits are near zero. The application 
success rate is not well represented in either the public or proprietary refiners’ literature because only success stories are publicized 
and even those are not always justified by the control-room reality. Common problems leading to poor performance are:

• Model inaccuracy
• Poor LP/QP optimizer tuning
• Lack of operator training and lack of maintenance.

Model inaccuracy can result either from poor plant-test execution or from process changes over a period of time that invalidate an 
initially good model. Problems may also arise because of non-linearities that have not been included in the model. 

Performance monitoring tools that identify the problematic models and quantify the degradation of controller performance are 
necessary. Such performance monitoring tools could assist the control engineer to better maintain MPC controllers and to prioritize 
problem areas. Unfortunately, the currently available tools produce complex data that is confusing to most practicing engineers. 

Complex LP problems contain a large number of possible active constraint sets. In these cases, encountering particular constraint 
trade-offs that were not considered in the MPC design can cause the application to drive the process in the wrong direction. Also, 
uncertainty in the empirical MPC models can create poorly conditioned LP matrices that result in highly undesirable controller
behaviour. Poor understanding of this issue is the norm, so these ill-conditioned problems are rarely fixed and benefits suffer.

There are significant benefits from better implementation and maintenance of current linear MPC controllers. Justification of 
NL control and optimization should not be based on capturing benefits already accessible to current linear MPC technology. 
In fact, a well-maintained MPC controller is a pre-requisite for successful implementation of non-linear optimization.
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Quotes taken from:  G Gattu, S Palavajjhala, and D B Robertson,
Bass Rock Consulting, Incorporated

Linear MPC controllers are now installed on all major units, at most refineries in the US. 

Successful MPC applications that meet the above criteria over their lifespan are surprisingly rare. 
Some applications are implemented poorly and others have degraded because of inadequate 
maintenance, to where benefits are near zero. The application success rate is not well represented 
in either the public or proprietary refiners’ literature because only success stories are publicized 
and even those are not always justified by the control-room reality.  

Common problems leading to poor performance include model inaccuracy. This can result either 
from poor plant-test execution or from process changes over a period that invalidate an initially 
good model. Problems may also arise because of non-linearities that have not been included. 

Performance monitoring tools that identify the problematic models and quantify the degradation of 
controller performance are necessary. Unfortunately, the currently available tools produce 
complex data that is confusing to most practicing engineers. 

There are significant benefits from better implementation and maintenance of current linear MPC 
controllers. In fact, a well-maintained MPC controller is a pre-requisite for successful 
implementation of non-linear optimization.
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Adaptive Predictive Control

(reducing engineering costs)
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Set point Desired output Process outputControl signalDRIVER PREDICTIVE
MODELBLOCK PROCESS

ADAPTIVE
MECHANISM

ADAPTIVE PREDICTIVE CONTROL

The adaptive mechanism acts on two feedback levels:

On the first feedback level, from the process I/O signals and the prediction error, the adaptive mechanism adjusts the predictive model 
parameters to make the prediction error tend towards zero. On the second level, the adaptive mechanism--at every control instant, informs 
the driver block about the current process status and of the process output deviation from the desired trajectory.  This information is used 
by the driver block to redefine the desired trajectory by taking into account the process status at said control instant.  This second feedback 
level complements the first level and ensures that the desired process output trajectory is always consistent with the current process status.

Adaptive predictive control applied, has demonstrated an excellent control performance when applied to industrial processes as long as 
there is a cause-effect relationship that determines the process dynamics and that this relationship can be identified by means of a model. 
Usually the cause-effect relationship of a process is present in certain domains of operations, while in others it fails to exist or cannot 
reliably be modelled in real time.   
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ADEX BLOCK DIAGRAM

An expert block has been added to the upper portion of the diagram and this, based on rules and on the evolution of the process 
variables, determines and/or modifies the operation of the control block, driver block, and adaptive mechanism.
Depending on the domain of operation the EXPERT BLOCK will determine if the CONTROL BLOCK is going to be a predictive model 
applying adaptive predictive control or an expert system applying expert control.

When adaptive predictive control is applied:
(i) The EXPERT BLOCK may modify the performance criterion to generate the desired trajectory within the DRIVER BLOCK, 
accommodating in this way the desired performance of ADEX to different domains of operation;
(ii) The EXPERT BLOCK determines when the adaptation is executed, taking into account the operating conditions; and
(iii) The EXPERT BLOCK makes full use of the available knowledge of the process (and it’s dynamics) to decide when and how to 
apply  APC, and when and how to apply expert control.  

Desired  outputSet point Process outputControl signal
Driver Control

BlockBlock Process

Adaptive
Mechanism

Expert
Block
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ISC/ADEX Project:   Here live plant showing commercial adaptive controller switched in place of poorly operating 
PI controller (difficult to tune due to changeable operating points)
The benefits are that the adaptive controller required little in the way of configuration as it learnt the underlying 
model and it was able to provide improved performance over the whole operating range
Red =set-point SP; green = process variable PV; orange = controller output OP; 
blue/white = other PVs not direct under control
Cannot mention any more about the process due to confidentiality issues.
Operators could easily revert back to their familiar PI – but they like it as it means less intervention for them.
Has been running without problem for a 2 months, through plant shuts and start-ups.

Adaptive Control switched on
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Importance of Modelling
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Plastic Film Making Process 

1. Die: converts the melt with a circular cross section to uniformly thick melt

2. Casting Drum: cools down the melt and produces continuous film

3. Slow-nip, Heating, Fast-nip, Cooling Rolls: stretch film in the machine direction

4. Coaters: add colours when required

5. Stenter Oven: includes Sideways-draw and Crystallisation

6. Winder: rolls the finished product.

Figure is from a book “Film Processing” 
by T. Kanai and G. Campbell (1999).

Thanks to Dupont
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Overview of  First-Principles Model 

Model Structure

• The model is implemented in MATLAB/SIMULINK

• For the purpose of  modelling, the plastic film extrusion process is divided into a number of  
unit operations, e.g. die, casting drum, etc 

• One of  the main features is to track changes in the film thickness, temperature, etc, 
throughout the process

• The whole process model consists of  a number of  unit operations; each of  the unit operations 
consists of  a number of  sub-models, such as deformation, heat transfer, mass transfer sub-
models.

Origin and Thanks to Dupont



Model in SIMULINK 

Thickness (example)

Temperature (example)

Simulink interface

• Thickness, temperature, etc can be tracked at almost any locations
• Inside the blocks, we have m-files of  all the equations, parameters, etc
• There are initialisation files for all the geometrical and operational data, etc

Origin and Thanks to Dupont
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higher fidelity models

(reducing engineering costs)
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Linear Parameter Varying (LPV)
Modelling and Control
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Introduction to Linear 
Parameter Varying Modelling

The system parameters in some nonlinear  systems are varying with the 
operating conditions that can be described by some variables. 
For such plants, including some subsystems in engines, they can be 
approximated by input output LPV systems with variables which can be 
measured online for scheduling. 
The variables can be used for a gain scheduled controller.
If the parameters are not known before or are time-varying online 
estimation is necessary.



Th
e 

AC
TC

 a
nd

 U
ni

ve
rs

ity
 o

f S
tr

at
hc

ly
de

Scheduling Controller Tuning

Can be effective when either a measured disturbance or the 
controlled variable correlates with nonlinear process 
changes.
Sometimes possible to tune the controller at different 
levels of the scheduling parameter and combine the results 
so that the controller tuning parameters vary over the full 
operating range.
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In addition to these state-space based methods, some authors have considered LPV
systems in an input-output form:

with

Where is the shift operator. Bamieh and Giarre (1999) considered the special

case where the parameters are polynomials in the time-varying

parameter . They showed that the coefficients of these polynomials can be

determined by solving a linear least-squares problem and they derived least mean-

square (LMS) and recursive least-squares (RLS) identification algorithms.

( , ) ( , )k k k kA q p y B q p u=

1 2
1 2

1 2
0 1 2

( , )  :  1 ( ) ( ) ( )

( , )  :  b ( ) ( ) ( ) ( )

a

a

b

a

n
k k k n k

n
k k k k n k

A q p a p q a p q a p q

B q p p b p q b p q b p q

−− −

−− −

= + + + +

= + + + +

( ), ( )i k i ka p b p

q

kp

LPV Systems in an Input-Output Form
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that are time varying depending upon the states also upon
control input:

State dependent systems arise when parametric uncertainty
is present in a model or when the actual NL system can be
approximated by a state dependent system and an LTI model
is a very poor approximation.

( 1) ( , ) ( ) ( , ) ( ) ( , ) ( )
( ) ( , ) ( ) ( , ) ( )

x t x u x t x u u t x u d t
y t x u x t x u u t

+ = + +
= +

A B
C

G
D

State Dependent Systems
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state equation matrices that are time varying and depend on the
states, inputs and parameters:

State dependent systems can also represent a class of Hybrid
systems.

( 1) ( , , ) ( ) ( , , ) ( ) ( , , ) ( )
( ) ( , , ) ( ) ( , , ) ( )

x t x u p x t x u p u t x u p d t
y t x u p x t x u p u t

+ = + +
= +

A B
C

G
D

State Dependent/LPV Systems
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LPV Model of the Air Path System

Based on Johanne S Kepler Universit at Linz, Thesis: Advanced LPV Techniques for Diesel Engines

The system states depend on the engine speed which is a typical scheduling variables in the 
production ECU for regulating the VGT vane position, which is one of the system inputs.
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LPV System Identification 
and Advantages

LPV robust control approach for a class LPV systems has attractive 
properties relative to the LTV approach. 
The LPV model takes advantage of the exogenous signal variables.
The result is that it is closely related to the working point conditions so 
that it can have smaller prediction errors 
The LPV model parameters can converge to constant values. 
For the LTV case the estimated parameters are always varying with 
different working points. 
Better control performance and robustness can originate from using the 
more precise model structure of LPV models.
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Improved control if very nonlinear

(reducing engineering costs)
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Simple Controller 

for Nonlinear Systems
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The main areas where nonlinear control is needed are:

• Regulator control problems where the process is subject to large 
frequent disturbances and hence exhibits a strong degree of 
nonlinearity, 

• Servo control problems where the operation points change frequently 
and span a sufficiently wide range of the process dynamics. 

Both cases are present in most modern chemical processes. 

“ the extension to nonlinear model based predictive control has not been very 
successful despite a significant amount of research effort having been put into 
this area. The main hurdle facing the extension of LMPC to NMPC is the 
significant computational burden especially in the case of large dimension, 
fast time response, and highly nonlinear processes. Any strategy that can be 
devised to alleviate computation burden is therefore desirable”.

Quoted Source: Rihab Khalid Al Seyab,Nonlinear Model Predictive Control Using Automatic Differentiation, 
Cranfield University, PhD Thesis, 2006

Need for Nonlinear Control
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Plant model may be given in a very general form, e.g.:
• state-space formulation
• neural network / neuro-fuzzy model
• look-up table
• Fortran/C code

Nonlinear Plant Model

• Can include linear/NL components, e.g. Hammerstein model with static input NL's

( , ) 0f u y =

• Only need to compute the output to given input signal

1kW 0kW z−Λ

dW

Control
Nonlinear Linear

u0u m
d

y

Output

Plant subsystems

Delay

u y

• Only knowledge of NL plant model required is ability to compute an output for a 
given control sequence.
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NGMV Problem Formulation

( ) ( )( )0 ( ) c ct P e t u tφ = + F

Control weighting assumed invertible and potentially nonlinear to   compensate 
for plant nonlinearities in appropriate cases

Weighting selection is restricted by closed-loop stability needs

2
0[ ( )]NGMVJ E tφ=

( )( ) ( )( )c c ku t z u t−Λ=F F

1
c cn cdP P P−= - linear error weighting (matrix fraction)

General NGMV cost function to be minimized:

with

- control weighting (possibly nonlinear)
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Implementation of the NGMV Control

( )1 1 1
0( ) ( ( ) ( )) ( )f f f ku t RY y t r t F Y u t− − −= − +F W

d

+
+

u-
+

Controller
Disturbance

e
Reference

Output
Plant

y

+
-

r 1
fRY− 1

ck
−F

kW
W

1
0 fFY−

Linear 
subsystems

ψ

The controller is nonlinear but fixed!

( )1 1( ) ( ( ) ( ) ( )) ( )
ck f k c ku t RY y t u t r t P u t− −= − − Λ − +F W W

1 1
0where

f fcP z RY F Y−Λ − −− =
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Smith Predictor Form of 
NGMV Controller

0
ψ

+

_

u

Plant

-
+

e

-

+

+

+

p

Compensator
Disturbance

1 1
ck cdP− −F W

kW

z−Δ

1 1
0p fA G Y− −

cnP

Output
Reference

yr

System may be redrawn and compensator rearranged as shown below
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Monitoring Methods

Improved control by aided tuning

(reducing engineering costs)
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Minimum Variance Benchmark
• Comparing current performance with     theoretical      best

Minimum Variance Controller

• Uses standard plant  operating data
• Process variability is linked to process economics
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MV Benchmark Limitations

Minimum variance analysis highlights deficiencient loops, but:
• Actuator movement is not penalised

• Assumes unlimited controller order

…which results in a pessimistic benchmark.

Also:

• Raw data is required – not archived/compressed data

• Difficult to link loop variability with process economics

• Only works on a loop by loop basis
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Illustrative Industrial Examples
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Original System Responses 
causing excessive wear

Improved System Responses 
following ISC investigation
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Food Homogenisation (ISC Ltd.)

Here are the results of using a benchmark before and
after a control loop investigation and improvement
exercise. Whilst the benchmark was not used to identify
the poor performance (it was the excessive maintenance
costs by the pressure variations), the metric clearly
reveals the improvements in control that were made.
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loop delay = 4 secs

Mon 3/3/03, η = 2% Thur 6/3/03, η = 18%

Refinery Flow Loop (ISC Ltd.)

1st data set shows oscillations (limit cycles) in controlled flow – very 
poor performance metric
2nd data set – cause of limit cycles (most probably a sticking valve) 
have been removed and improvement in performance is clear, though 
could still possible do better.

In this case step tests were possible to obtain loop delay to a high degree of 
confidence.  It is clear from looking at the trend of the first data set that it 
has problems but benchmarking is an automatic way of calculating loop 
performance.

The figure of merit is related to a theoretical minimum. If only looking at 
past variance (i.e. like SPC) then one might think that the 2nd data set is 
good (compared to the variance from 1st data set). However, the 
Poor MV benchmark shows that this loop is still underperforming
and plenty of opportunity for improvement.
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Furnace  Temperature Control (ISC Ltd.)

Product

… but which loops are underperforming ?

• Furnace exit temperature is critical:
– product quality, re-work and energy consumption

• Depends on good control

Consider a simple furnace example of two parallel streams of product being heated to a desired temperature. There are six control loops 
in total, 3 on each stream:

• Product flow controller
• Fuel gas flow controller
• Product temperature controller – required temperature = 380 degC

The final temperature depends upon all control loops, since variations in the product and fuel gas flow controllers will influence the
final temperature. Such variations may arise due to changes in pressures and also coupling between common parts of process.
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Normal operating data:
333FC5400 - Fuel Gas Flow
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333FC5201 - Product Flow
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333TC5440 Furnace Exit Temp

370

372

374

376

378

380

382

384

386

388

390

10
:5

7:
12

11
:0

2:
09

11
:0

7:
04

11
:1

1:
59

11
:1

6:
54

11
:2

1:
50

11
:2

6:
45

11
:3

1:
40

11
:3

6:
35

11
:4

1:
30

11
:4

6:
25

11
:5

1:
21

11
:5

6:
17

12
:0

1:
12

12
:0

6:
07

12
:1

1:
02

12
:1

5:
57

12
:3

3:
12

12
:3

8:
07

12
:4

3:
02

12
:4

7:
57

12
:5

2:
52

12
:5

7:
47

13
:0

2:
42

13
:0

7:
37

13
:1

2:
32

13
:1

7:
27

13
:2

2:
23

13
:2

7:
19

13
:3

2:
14

13
:3

7:
09

13
:4

2:
04

13
:4

6:
59

333TC5440.SP 333TC5440.MV

Furnace Temperature Control (ISC Ltd.)

The loop delays also need to be known:

• For flow loops this was assumed to be 5secs
• For temperature loop – historical data showed this 

to be 30secs.

Trend showing Fuel Gas Flow

1. It is in cascade control – hence the varying SP.
2. Trend showing Product Flow.
3. Trend showing Furnace Exit Temperature
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Results from MV Benchmark:

Fuel Gas Flow Loop = 50%

Temperature Loop = 15%

Product Flow Loop = 2%

Poor product flow control!!

Agreed with a formal investigation of the process.

Furnace Temperature Control (ISC Ltd.)

Results obtained from running the data through the basic algorithm clearly shows which 
loops are underperforming.

These performance indices were not linked to the economics of the plant, but just relate to 
pure variability.
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Furnace Temperature Control (ISC Ltd.)

This image shows the graphical output of the results in the PROBE prototype software 
developed under the ETSU project

This really emphasises which loops are performing well and those that are not.



Th
e 

AC
TC

 a
nd

 U
ni

ve
rs

ity
 o

f S
tr

at
hc

ly
de

Final Remarks
For difficult control problems modelling and simulation are often essential 

otherwise we are blindly attempting to cross a motorway.

Many ways treating nonlinearities and uncertainties, leading to different 

design methods.

Performance often falls when improving robustness but proper treatment of 

nonlinearities can lead to significant improvements in performance and 

robustness.

Low order controllers have natural benefits and robust behaviour.

New LPV models and control methods have considerable potential for 

applications not fully explored in the process industries.
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