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Industrial Systems and Control Limited

“Control Engineering Services for

the Automotive Industry”
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<++" and control

@ Control engineering consultancy

0 Founded 1987 - as a spin-out from Strathclyde University
® \Works across many sectors:

O Automotive; Marine; Oil/Gas; Power Generation

0 Small — 5 full time, 4 part time employees
® However we work with some very large companies:

0 General Motors; Toyota; Ford; Jaguar; Visteon; BP; Shell;

Boeing; BAE Systems; Rolls Royce Marine; SSE; Alstom; EDF
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® Dynamic Systems Modelling:

O high fidelity first principles models or data-driven identification

@ Control Strategy Design — both new and improvements

O full software development — NI LabVIEW / CompactRio
® Troubleshooting Control Problems

® Optimisation

ISC provides support on

® Energy Efficiency Benefits Analysis novel or challenging control
applications.

® Technology Reviews
Close working with clients to
get best solution and ensure

® Training — standard and bespoke courses
full transfer.
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Dynamic Modelling at the Core "-++" and control

Logged plant data Model validation e If
plus (static/dynamic SEIENGE
Intuitive knowledge behaviour)
Problem
Diagnosis

Port to
simulation Control Design
environment Evaluation
ﬁ F Benefits
information model
Pump & valve { }
characteristics Establish plant The process of validating dynamic
physical behaviour during early construction
Dimension of structure/data often reveals additional issues that

vessels & pipes can be resolved through design
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® Projects on Advanced Control:
0 General Motors, US — Nonlinear Control for Powertrain
0 GM — Estimation of Aging in Catalyst
0 GM — New Techniques for Engine Calibration
0 GM — Advanced Predictive Control for Improved Emissions/Fuel
0 Toyota, US — New Advanced Control for Automotive Powertrain
0O Torotrak - Variable transmission system

® Training: Chrysler, Ford, Freescale, GM, Jaguar, Ricardo, Toyota

and Visteon.
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® |SC has National Instruments (NI) Powertrain Control Software

and Hardware
0 complete set of actuator drivers and sensor IO
® Allows rapid control prototyping on test engines
® Customisable software using NI LabVIEW
O Fast and flexible implementation
0 Replication and monitoring of ECU core functions

Ed LabVIEW ;‘Wﬁ?ﬂmﬁhﬂ"

Certified Associate Developer




,**+, industrial

: : - 23, indu
ISCs Control Engineering Training . 8 2 Systems |

Wide range of highly regarded industrial courses
From basic loop tuning to advanced control

Extensive computer-based hands-on

® \When given at company premises can be tailored to exact need
® Bespoke exercises and entire courses can be provided

® Scheduled Training Courses
O  our five most popular and general courses

O held in central location, scheduled regularly
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® Control Engineering Practice

® Control Fundamentals — System Identification

® Model Based Control for Automotive Applications
® Nonlinear Control for Automotive Applications

® Kalman Filtering

® Optimization and System Identification

® Introduction to Modelling, Simulation & Control for

Automotive Applications
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Automotive Control Projects

#1 Diesel Engine Control
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Diesel Engine 2x2 System T @ : systems
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U= XE(\;R (%)

\ ~——PRESSURE SENSOR
EGR VALVE | [ INTAKE MANIFOLD
i -

y,:= MAP (kPa)

(air-cooled)

Pre-intercooler volume

T~ y,=MAF (g9

COMPRESSOR- 3 GEOMETHY
/ TURBINE (VGT)
/ Two disturbances:
,’ 1. Engine speed N (rpm)
U,= Xy (%) 2. Fuel flow W, (kg/s)

representing engine load
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Diesel Engine Model Example 10 systems

® To control:
O Intake manifold pressure or Manifold Absolute Pressure (MAP)
O Exhaust gas recirculation (EGR) rate (or fraction)
® Two control signals:
O Variable Geometry Turbine (VGT) vane lift u,,4 [% closed]
O EGR valve stem position U, [% open]
® |ncludes additional actuator:
O EGR throttle uy, [% closed]

O Normally kept fully open - can be used to extend authority of EGR

valve
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® Both VGT and EGR introduce internal feedback paths
in engine
0 Potentially, depending on engine operating conditions, cause:
> Response overshoots

» Non-minimum phase behavior

» DC sign reversal
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® Diesel engine control objectives

O Supply driver's requested engine torque

O Minimize fuel consumption

O Keep NO, conc. in exhaust and smoke as low as possible
@ In this study, torque control not considered

3 Fuel flow W; is given - represents engine load.

® EGR is ratio of exhaust gas flow recirculated into intake manifold to

total gas flow into cylinders

O3 Defined as: EGR = Wegr
MAF +W,

‘egr
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Control Objectives 181 systems

® Set-points for EGR; and MAP are computed on-line
from static maps (given as look-up tables)

O Maps are functions of engine conditions - i.e. engine speed

and fuel flow rate

® General block diagram of Diesel Engine control

system may be constructed as in following Figure

Diesel Engine Control System o't Syctome.

1 1 ces” trol
Schematic Diagram and contro

W
vvfl : W, |
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MAPS? e —

Set-points & Feedback @yﬂﬂ_’ Engine [ TEGR

Feedforward Controller

MAF

EGR®" ® U ] EXMP
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® EGR throttle assumed to remain fully open
3 To simplify control problem
0 Results in square 2x2 system
O Feedforward signals not included explicitly in solution
» Denoted by dashed lines in figure
® Feedback Controller block includes Kalman Filter

0 Estimates engine states based on:
» Model

» Measurements of MAP, MAF and exhaust manifold pressure EXMP
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, can-scheduled parameters

W simDiesel/PID. ’/ 1 cl@| %
File Edit View Smulation Format Tools i
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Ready
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(X, %) used as controller outp;uts
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Automotive Control Projects

#2 Predictive Control for SI and Diesel Engines
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® Control vector DU(t) is often costed and calculated to minimize:
O Predicted errors over prediction horizon N

O Size of control move over control horizon N,

® Consider the quadratic performance index:

minJ =E (+1 JQE (1 }AU (tJ RAU (t
AU(t)

O where Q is positive-definite weighting matrix and R is positive semi-definite

matrix
O Both Q and R are usually diagonal matrices with positive diagonal elements

O Weighting matrices are used to weight most important outputs and inputs

10
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® NMethods to deal with uncertainties, disturbances and robustness
O Cost weightings and additional sensitivity cost terms
O Disturbance models

O System descriptions

Tuning Procedures for Robustness:

O PID inspired / Free cost weighting choice

Modifications to the Estimator:

O Modelling error compensation

Application of constraints:

O Hard constraints / Soft constraints

Delay compensation - similar ideal response as Smith Predictor
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® Note steady state error
O MPC (in basic form) has no integral action
O Needs to be introduced artificially
® Recommended:
3 Introduce integrator on dynamic control error weighting

O Weight incremental control action and modify plant by

augmenting an integrator
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® System with state equation matrices that depend
upon:
0 States
3 Control inputs

O Parameters

X(t+D =A(xu PXI+Z(Xx U P UX+D( xu p )
yO)=C(xu pX)+E(x U P @
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® State-dependent LPV systems include:
O Pseudo-LPV systems
O PWA systems

O Some Hybrid systems

® Choice of model is a problem:
3 Uniqueness
3 Type of model due to origin (physical equations, Jacobian, ...)
3 Uncertainty representation (unstructured, parametric, ...)
O Numerical computations and sensitivity

3 Implications for Control law solution (bias terms, scaling, ...)
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Cost-Function Definition: Engines 8 2 Systems |

® Optimal control problem and cost-function must have

simple base level
O Which is well understood

O But must also be able to cope with:
» Future enhancements

» Changes to performance, drivability & fatigue knowledge
® Generalized Predictive Control (GPC) related cost-

function and solution approach was first proposed

O Reason: very successful in process industries

+, industrial

) ions: i 'e’% syst
Cost-Functions: GPC Augmentation R

Cost-function can however include dynamic weightings
O To enable frequency response shaping of designs
Weightings may approximate nonlinearities if made state-dependent
O Possibly needed in drivability/fatigue minimization problem
O Involves little additional complexity
Cost-function will also include:
O Traditional tracking error term; control action costing term
Cn also include nonlinear control weighting term to introduce:

O Wind-up protection; Hard constraint limits

13
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B simDiesel/SDNPGMV =

u(t) refers to (x,, X,) controls

U(t) refers to (A, A,) controls
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Comparison of NGPC with Dynamic Control
Costing and NGMV (red) both with PID
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Thank you. Any questions ?

Dr Andy Clegg, Managing Director, ISC Ltd

Tel: (+44) 0141 847 0515

Direct: (+44) 0141 225 0127

Fax: (+44) 0141 221 1706

Web: www.isc-Itd.com

36 Renfield Street, Glasgow, G2 1LU, Scotland, UK
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