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Introduction

* Minimum variance is the most popular stochastic

benchmark: simple, meaningful, easy to calculate
« Comparison against the best possible linear controller

 However, all real plants are nonlinear

* Need for high performance control over wide operating

range — nonlinear control

* Introduction of NGMV — a new simple nonlinear controller



Minimum Variance Control — a few dates

1970 Astrom: MV controller for linear minimum phase plants

1971 Clarke & Hastings-James: Generalized MV criterion

1975 Clarke & Gawthrop: Self-tuning GMV controller
1988 Grimble: GMV control law revisited

1992 Harris, Desborough: MV benchmarking, “Harris” index
1999 Huang & Shah: MIMO MV benchmarking
2002 Grimble: GMV benchmarking

2003 Grimble: Nonlinear GMV control




* Introduction

* Review of the linear GMV control theory

* Nonlinear GMV controller

* Performance assessment against NGMV controller
« Simulation example

e Summary



LTI System Model

A =FPe+ Fu
Error Conirol
welghting £ F; weighting
E" I I ‘Co i’ W

Controller

Iy c
| W TR
Eeference

l Wl ',“'H'I‘_"Wlf W

B

Diasturbance
model

Plant

&G=n-—V= S(Z_l)(l”[ _dt)
u, =C,(z)S(z (. -d)

é:t’é/t

LAY

- control error

- control signal

- Independent white noise sequences

WizH=z" igli
1) = E, (Z_l)
)=
gy G (Z_l)
Wi(z")=
="
S=@1+WC,)™"

sensitivity function




Spectral Factorisation

Aim: combine all the stochastic inputs into one noise signal

Linear models driven l

by white noise \
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Minimum Variance Control

To minimize: output variance Sy = E[y?(2)]

y()=Wult —k) +Y,&(2) .
=
:) " Rg@ Diophantine equation
/

statistically independent terms

: R R
Optimal control: Mr(y=—"ge(t)=—— (¢
p u™" (2) Wg() WFy()

MV controller works when:
* the plant W is invertible (minimum-phase)
* reference and disturbance models are representative of the actual

signals entering the system



Generalised Minimum Variance Criterion

To minimize: variance of the “generalized” output ¢,(2):

Jowr = Elds (0)] #o(1) = Fe(t) + FLu(t)
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Generalized plant

GMYV problem can be recast as an MV problem for the “generalized” plant:
#(0) = P.(~z" Wu(t) + Y p(0)) + Fu(t)
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ggbo =Pe+Fu

------ § & s

E o oo J’

rror i H i i Control Disturbance

weighting i__?;_“i i“{?_f“_i weighting Wa model ¢
A

E i Nonlinear
) Reference E Controller i plant d P Y
sl Esp—te—io U M5 v
B +
y ¢
0 i
' CO » Z (Fck _Pch) Rl

A




GMV Controller

MV control of the plant (P.W - F): _ _ _
Diophantine equation

Go(t) = (W =F )u(t) + P.Y r&(t) PY =F+z 'R

:@)u(t—k)—i—@

/

statistically independent terms
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Optimal GMV control: GMV (1) = _ t
P u () (PCW—FC)F%()

Polynomial solution:
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GMV Controller Implementation
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Nonlinear System Description
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Plant Model

Nonlinear plant model may be given in a very general form, e.g.:

» state-space formulation
* neural network / neuro-fuzzy model
- look-up table u #- Y |

e Fortran/C code

: : . u,y)=0
It can include both linear and nonlinear components, S, y)
e.g. Hammerstein model: l"/
Plant subsystems W
PN d
- I
d
”_» Wik > o z7* " ti :y
Output

Control
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Just need to obtain the output to given input signal




Nonlinear GMV Problem Formulation

The cost function is as in the linear case:

I Ny = E[¢o2 (1)]

with #o(t) = Pe(t)+(F.u)(t)

P
P: cn

c

- linear error weighting

Qe
.

(Feu)(t)=2z"(Fu)(t) - possibly nonlinear control weighting

 Control weighting invertible and potentially nonlinear to
compensate for plant nonlinearities
* The weighting selection is restricted



Nonlinear GMV Problem Solution

The approach also similar:

#(1) = P (== (W) (1) + Yy (0) +(Fr) (1) PY,=F+z "R
= 27" (F . — BW, )u(1 +PYf8(l‘) Diophantine equation

g(t) — white noise (sequence of
statlstlcally mdependent independent random variables)

Optimal control: u"M (1) =—(F_, — PW,) " Re(r)
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stable causal nonlinear operator inverse




Nonlinear Operator and its Inverse

By definition:

(P = F e Ju=F, (W) (t) = (F u)(t) =y ()

O = F | P (7 i) -

1

w (1) |

— W, P nverse operator
u | -1 u
Fee
o F pr -
— P, Wy

 Control weighting assumed invertible

* For the closed-loop stability, the nonlinear operator must be invertible

in the operating region
* Problem: algebraic loop



Algebraic Loop

Problem solutions:

* solve the loop iteratively on-line

* introduce an additional delay in the loop
« transform into equivalent problem:

— split the nonlinear operator into two parts involving a delay-free
term N, and a term that depends upon past values of the control

action N, w(t)=(PW,—F,  Ju=(N qu)(t)+ (N u)(¢)

N L — (N qu
u(t)=N (w(t) (N 4 )(t)) No=N | 1 =(BW,~Fy)

— Wy o P, Inverse operator
el T Wi TR R v
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Controller Implementation
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Bias and Steady-State Levels

« So far the assumption was on zero mean exogenous signals
» Behaviour at an operating point of interest

Signal notation: x=x+5¥ U il tsbebpe— )

-~ W >
/ \deviation N 4

Modified Signal ¢0(t) N Disturbance
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Design of the Weightings

* Restriction on the choice of weightings: invertibility of the nonlinear
operator
(Pch _Fkk)

« Control weighting may be used to control a non-invertible plant

« Admissible and meaningful choice of the weightings is the subject
of current research

» Adaptation of the linear-case rules of thumb:
 P. normally high at low frequencies to guarantee integral action
* . high at large frequencies to provide sufficient controller roll-off
» properties close to those of LQG-type controllers
» closed-loop bandwidth normally close to cross-over frequency of
the open-loop system — loop shaping



Design of the Weightings (cont.)

Consider @, linear and negative: F_, =-F

Then  (pw, +F)u=F, (1+ %iju
k

return-difference operator for a feedback system
with the delay-free plant and controller F.

e

Consider the delay-free plant €2, and assume a PID controller Ky,
exists to stabilize the closed-loop system.

Then a starting point for the weighting choice that will ensure the
operator  (PW,+F,) s stably invertible is

£
e K
F, PID




Special Case: Nonlinear MV Controller

Note that in the limiting case, for a square system, when F_, — 0
the optimal control signal becomes

o (1) = (B, RY (1) ~d (1)

Clearly the minimum variance control for the nonlinear
system includes the stable inverse of the plant model, when
one exists.



Special Case: Actuator Saturation
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Problem:  select invertible control weighting @, such that
an anti-windup mechanism is achieved
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Actuator Saturation (cont.)

Control weighting choice:

(F 10)(t) = (F ) (£) + —E2—[u — £ ()]

1-z integrator, becomes
nominal weighting \ active at saturation

f(u)

Control signal becomes:

o) = | o 0 )(0) - R ()~ = @)



Actuator Saturation — Block Diagram

anti-windup scheme
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Actuator Saturation - Example
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Nonlinear Smith Predictor

* Optimal NGMV controller can be expressed in a similar
form to that of a Smith predictor

* Introduction of this structure limits the application of the
solution on open-loop unstable systems

* The structure is intuitively reasonable and should be
valuable in applications

« The Smith predictor results by rearranging the controller

structure



Nonlinear Smith Predictor

The control loop can be rearranged as follows:
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Nonlinear Smith Predictor

When the error weighting P, includes an integrator, it must be placed
in the inner error channel:
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Extensions

« NGMV Feedback, Feedforward and Tracking control
* Multivariable version — time-delay matrix
* Modelling issues — “Neuro-fuzzy NGMV control”

» State-space representation
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Estimation of the Minimum Variance

NGMYV controller cancels the (generalized) plant dynamics and the
generalized output signal ¢,(?) is a moving-average time series:

1 (1) = Fe(t) = foe(t) + fie(t =1) + ..o+ fi_q6(t —k +1)

The minimum variance (the benchmark) follows as

This value depends only on the noise model and the plant time delay.

Problem: estimate J.,, from the collected closed-loop data.




“Harris Algorithm”

Harris (1989) and Desborough and Harris (1992, 1993):
» model the controller-dependent part of the output as AR time series
 estimate the minimum variance as the residual error variance

The generalized algorithm applies to the signal ¢,(z) rather than y(z):

d,(t) = Fe(t) + Zai¢0(t_k —1)
Collect N samples of data and ZJ\?rite in matrix form:

least-squares solution

p=Xa+¢e a=X"X)"X"¢
Minimum variance ~ ~> _ 1 (5 - X&) (7 - X&)
estimate: ™o N—-k=2m+1



FCOR Algorithm

Huang and Shah (1999): Filtering and Correlation algorithm
* model the output as an AR time series and estimate the white noise

generating sequence (innovations sequence)
« correlate the obtained white noise with the output

As applied to the generalized signal ¢,(2):

Whitening process: ¢ =————¢ = & =A4(g )4
A(g™)
Cross-correlation: r.(0) = Elge]= /o
Pss (1) = E[¢tgt—l] = fl

M
r¢g (k _1) - ,(EI_|_¢t‘9t—k+1] - ﬁc—l
Minimum variance: J . = Zfl.z
i=0



Controller Performance Index

For the existing controller

J = Var[¢0] 2 J min
Definition of the Controller Peformance Index:

1 (NGMV control)
Jmin

J

K =

0 (very poor control)

“Harris index”
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Continuous Stirred Tank Reactor

Symbol unit nominal
a, TO’ CaO value
A B+ output —> | Product concentration | C, mol/l 0.1
heat Reactor temperature T K 438.54
‘ input — | Coolant flow rate . |/min 103.41
| Process flow rate q I/min 100
U TcO . ; . Feed concentration Ca mol/l 1
- > | ’ O( Feed temperature To K 350
|i' {/: ' - Inlet coolant temperature Teo K 350
_'__;7 CSTR volume \Y | 100
> Heat transfer term hA cal/min/K 7-105
I ,i ,{fa’; ] a, T, Ca Reaction rate constant Ko min-! 7.2-1010
Activation energy term E/R K- 1-104
Heat of reaction AH cal/mol -2-105
Feed density P gl 1-103
. Coolant density Pe g/l 1-103
Energy balance equation Foed speciic heat S, gk | 1
Tg(t) _ qIEYZ)(TO _T(t))+ %koca (t)exp(_?/R] Coolant specific heat Cpe cal/lg/K 1
. o ) Material balance equation
P pe —hA
Gersoleechalm &1, c.m)-reep 0




Open-Loop Step Responses

Small desations
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Optimal Controller Design

Disturbance model: Frequency response of the weightings

— OOOl Bode Diagram
¢ 1-0.95z7" ) B
Dynamic weightings: £
il .
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GMV Controller Design

Sensitivity function plots for the PID and the linear GMV controller
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Stochastic Performance

C, [mol/l] Controller Var[C ] Var[q ] Var[o]
Pl 9.687e-6 5.789e-1 5.088e-1
0.06 GMV 8.212e-6 7.575e-1 7.886e-2
NGMV 8.079e-6 7.780e-1 7.323e-2
PI 9.765e-6 2.683e-1 3.198e-1
0.1 GMV 7.495e-6 3.496e-1 7.315e-2
NGMV 7.487e-6 3.498e-1 7.318e-2
Pl 8.770e-6 2.083e-1 2.647e-1
0.12 GMV 2.386e-5 3.418e-1 2.375e-1
NGMV 7.536e-6 2.591e-1 7.229e-2




Benchmarking Results

Benchmarking results (nominal operating point)

Controller Method Jmin J

Harris 7.301e-2 3.202e-1
Pl

FCOR 7.253e-2 3.201e-1

Harris 7.329e-2 7.320e-2
GMV

FCOR 7.304e-2 7.319e-2

Harris 7.336e-2 7.323e-2
NGMV

FCOR 7.310e-2 7.322e-2

eta

Benchmarking results (operating point C,=0.06 mol/l)

Controller Method Jmin J
- Harris 7.339e-2 5.105e-1
FCOR 7.296e-2 5.104e-1
Harris 7.340e-2 7.896e-2
GMV
FCOR 7.315e-2 7.895e-2
Harris 7.339e-2 7.330e-2
NGMV
FCOR 7.316e-2 7.329e-2

Benchmarking results (operating point C,=0.12 mol/l)

Controller Method Jmin J

Harris 7.185e-2 2.665e-1
Pl

FCOR 7.159e-2 2.665e-1

Harris 7.966e-2 2.386e-1
GMV

FCOR 7.949e-2 2.386e-1

Harris 7.213e-2 7.242e-2
NGMV

FCOR 7.204e-2 7.241e-2

eta




Comments on the Results

* NGMV shows best performance over the whole operating range

» While the linear GMV control adequate for small deviations from the
nominal operating point, its performance degrades when away from it
 Overall performance of the existing Pl controller remains relatively
unchanged compared with the linear GMV controller — this is due to
greater robustness of this simple controller

 Transient performance comparable; NGMV more robust than linear

GMYV away from the operating point
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Summary

« Simple nonlinear control algorithm introduced

» Generalization of the established linear GMV controller

* Anti-windup mechanism easily incorporated

» Can be represented in the “nonlinear Smith predictor” form

» Candidate for a benchmark controller



