

New Ideas in Performance Assessment and Benchmarking of Nonlinear Systems

Presenter: Prof. Michael J. Grimble

Presentation prepared by: Pawel Majecki

Presentation Outline

- Introduction
- Review of the linear GMV control theory
- Nonlinear GMV controller
- Performance assessment against NGMV controller
- Simulation example
- Summary

Introduction

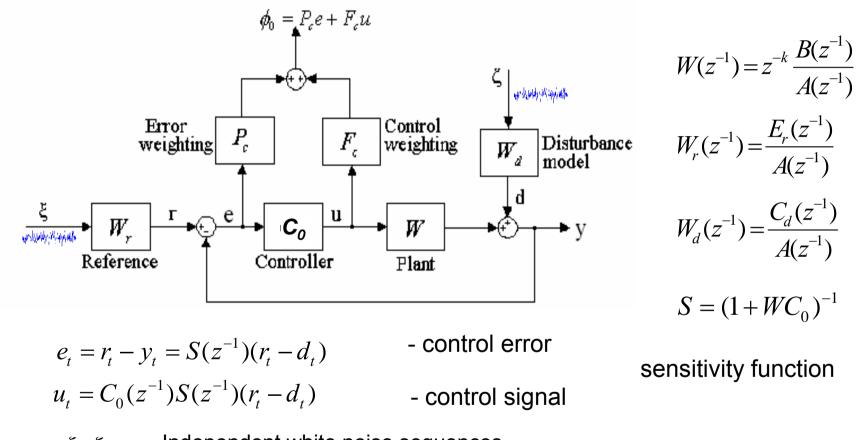
- Minimum variance is the most popular stochastic benchmark: simple, meaningful, easy to calculate
- Comparison against the best possible linear controller
- However, all real plants are nonlinear
- Need for high performance control over wide operating range \rightarrow nonlinear control
- Introduction of *NGMV* a new simple nonlinear controller

Minimum Variance Control – a few dates

1970	Åström: MV controller for linear minimum phase plants
1971	Clarke & Hastings-James: Generalized MV criterion
1975	Clarke & Gawthrop: Self-tuning GMV controller
1988	Grimble: GMV control law revisited
1992	Harris, Desborough: MV benchmarking, "Harris" index
1999	Huang & Shah: MIMO MV benchmarking
2002	Grimble: GMV benchmarking
2003	Grimble: Nonlinear GMV control

- Introduction
- Review of the linear GMV control theory
- Nonlinear GMV controller
- Performance assessment against NGMV controller
- Simulation example
- Summary

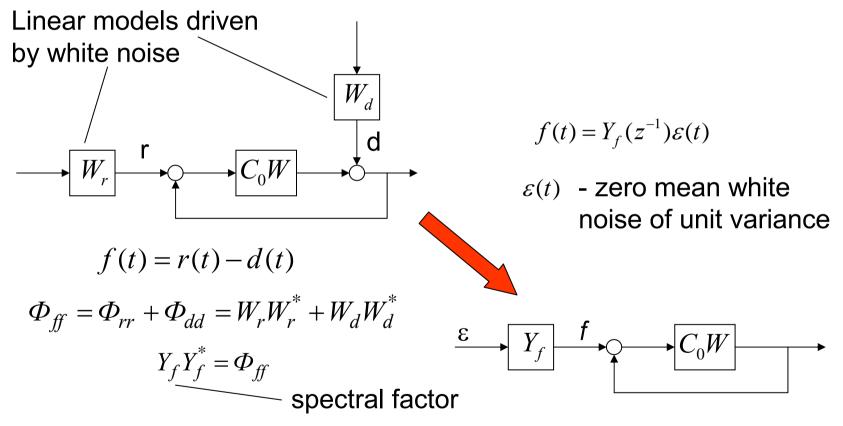
LTI System Model



 ξ_t, ζ_t - Independent white noise sequences

Spectral Factorisation

Aim: combine all the stochastic inputs into one noise signal



Minimum Variance Control

To minimize: output variance $J_{MV} = E[y^2(t)]$

$$(t) = Wu(t-k) + Y_f \varepsilon(t)$$

= $F\varepsilon(t) + Wu(t-k) + R\varepsilon(t-k)$

 $Y_f = F + z^{-k}R$

Diophantine equation

Optimal control:
$$u^{MV}(t) = -\frac{R}{W}\varepsilon(t) = -\frac{R}{WF}y(t)$$

statistically independent terms

MV controller works when:

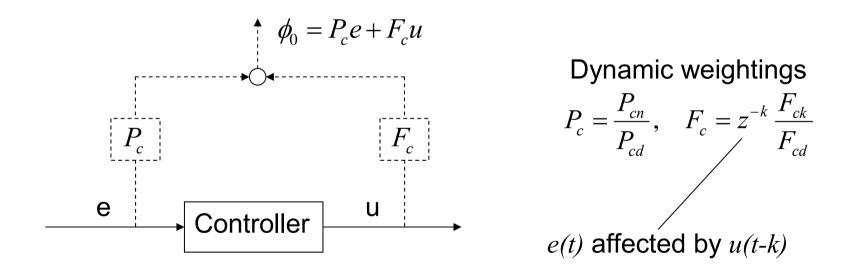
y

- the plant *W* is invertible (minimum-phase)
- reference and disturbance models are representative of the actual signals entering the system

Generalised Minimum Variance Criterion

To minimize: variance of the "generalized" output $\phi_0(t)$:

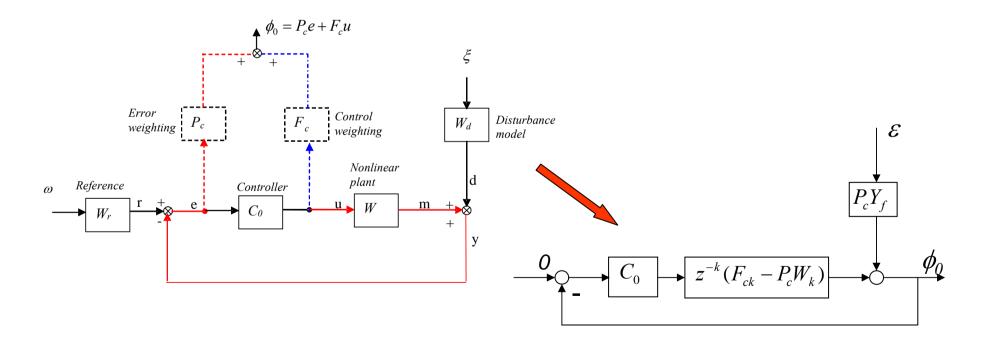
$$J_{GMV} = E[\phi_0^2(t)] \qquad \phi_0(t) = P_c e(t) + F_c u(t)$$



Generalized plant

GMV problem can be recast as an MV problem for the "generalized" plant:

$$\phi(t) = P_c \left(-z^{-k} W_k u(t) + Y_f \varepsilon(t)\right) + F_c u(t)$$
$$= z^{-k} \left(F_{ck} - P_c W_k\right) u(t) + P_c Y_f \varepsilon(t)$$



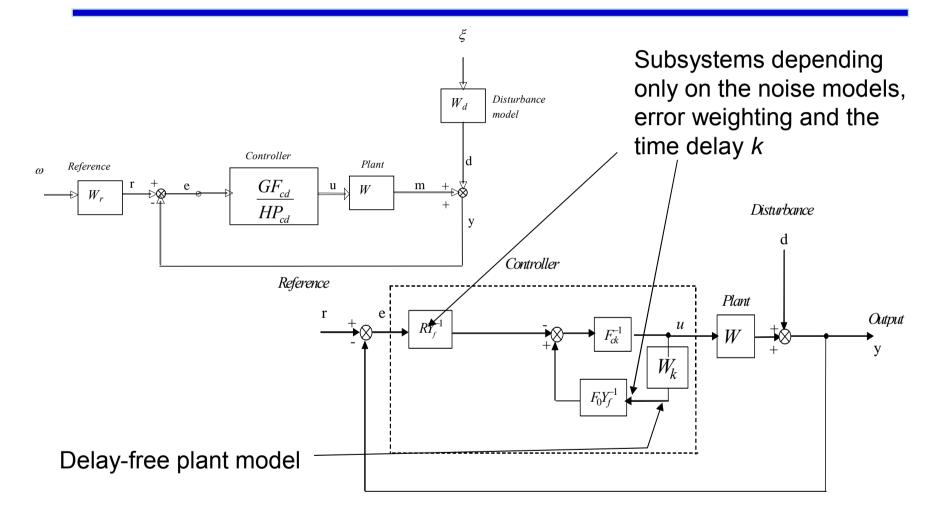
GMV Controller

MV control of the plant $(P_cW - F_c)$: $\phi_0(t) = (P_cW - F_c)u(t) + P_cY_f\varepsilon(t)$ $= F\varepsilon(t) + (P_cW - F_c)u(t-k) + R\varepsilon(t-k)$ statistically independent terms Optimal GMV control: $u^{GMV}(t) = -\frac{R}{(P_cW - F_c)F}\phi_0(t)$

Polynomial solution:

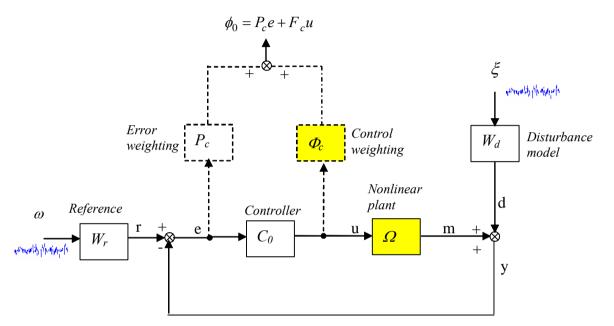
$$u^{GMV}(t) = -\frac{R}{(F_{ck} - FY_f^{-1}W_k)Y_f} e(t) = \frac{GF_{cd}}{HP_{cd}}e(t)$$

GMV Controller Implementation



- Introduction
- Review of the linear GMV control theory
- Nonlinear GMV controller
- Performance assessment against NGMV controller
- Simulation example
- Summary

Nonlinear System Description



Nonlinear plant model:

Disturbance model: (assumed linear)

Reference model: (assumed linear)

 $(\mathsf{W}u)(t) = z^{-k} (\mathsf{W}_k u)(t)$ $W_d = A_f^{-1} C_d$ $W_r = A_f^{-1} E_r$

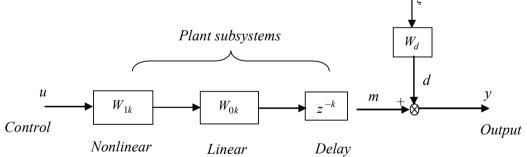
Plant Model

Nonlinear plant model may be given in a very general form, e.g.:

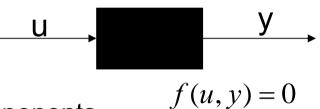
- state-space formulation
- neural network / neuro-fuzzy model
- look-up table
- Fortran/C code

It can include both linear and nonlinear components,

e.g. Hammerstein model:



Just need to obtain the output to given input signal



Nonlinear GMV Problem Formulation

The cost function is as in the linear case:

$$J_{NGMV} = E[\phi_0^2(t)]$$

with $\phi_0(t) = P_c e(t) + (F_c u)(t)$

$$P_{c} = \frac{P_{cn}}{P_{cd}} - \text{linear error weighting}$$

$$(F_{c}u)(t) = z^{-k} (F_{ck}u)(t) - \text{possibly nonlinear control weighting}$$

- Control weighting invertible and potentially nonlinear to compensate for plant nonlinearities
- The weighting selection is restricted

Nonlinear GMV Problem Solution

The approach also similar:

$$\phi(t) = P_c(-z^{-k} (W_k u)(t) + Y_f \varepsilon(t)) + (F_c u)(t) \qquad P_c Y_f = F + z^{-k} R$$

$$= z^{-k} (F_{ck} - P_c W_k) u(t) + P_c Y_f \varepsilon(t) \qquad \text{Diophantine equation}$$

$$\phi(t) = F_{\varepsilon}(t) + (F_{ck} - P_c W_k) u(t-k) + R\varepsilon(t-k)$$

$$\varepsilon(t) - \text{ white noise (sequence of independent random variables)}$$
Optimal control: $u^{NGMV}(t) = -(F_{ck} - P_c W_k)^{-1} R\varepsilon(t)$

$$\underline{stable \ causal \ nonlinear \ operator \ inverse}$$

Nonlinear Operator and its Inverse

By definition:

$$(P_c W_k - F_{kk}) u = P_c (W_k)(t) - (F_{kk}u)(t) = \psi(t)$$

$$u(t) = F_{kk}^{-1} \left[P_c (W_k)(t) - \psi(t) \right]$$

$$Inverse operator$$

$$u \qquad F_{kk} \qquad$$

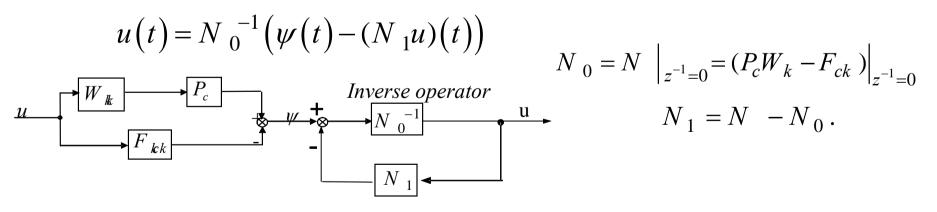
- Control weighting assumed invertible
- For the closed-loop stability, the nonlinear operator must be invertible in the operating region
- Problem: algebraic loop

Algebraic Loop

Problem solutions:

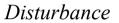
- solve the loop iteratively on-line
- introduce an additional delay in the loop
- transform into equivalent problem:

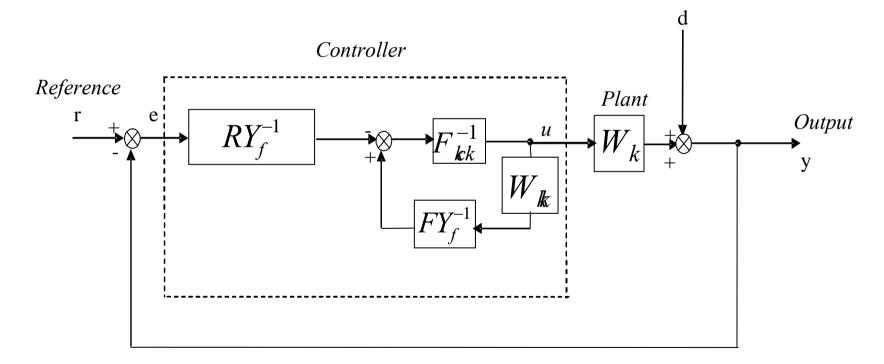
→ split the nonlinear operator into two parts involving a delay-free term N₀ and a term that depends upon past values of the control action N₁: $\psi(t) = (P_c W_k - F_{ck})u = (N_0 u)(t) + (N_1 u)(t)$



Controller Implementation

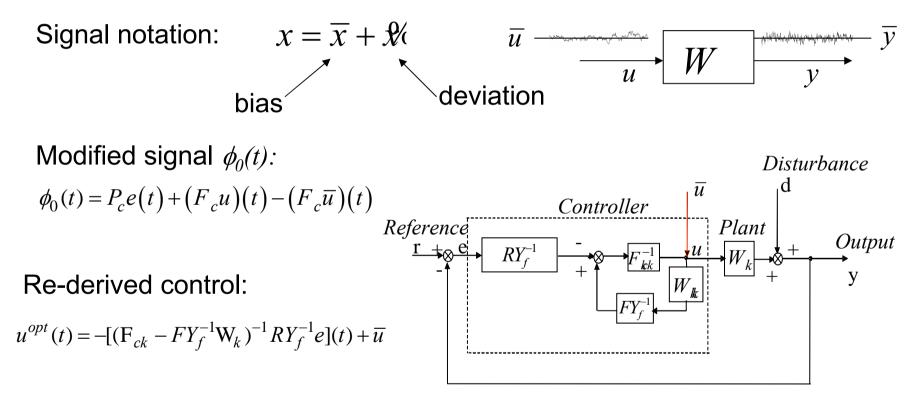
$$u^{NGMV}(t) = -[(\mathbf{F}_{ck} - FY_f^{-1}\mathbf{W}_k)^{-1}RY_f^{-1}e](t)$$





Bias and Steady-State Levels

- So far the assumption was on zero mean exogenous signals
- Behaviour at an operating point of interest



Design of the Weightings

• Restriction on the choice of weightings: invertibility of the nonlinear operator

$$\left(P_{c}W_{k}-F_{kk}\right)$$

- Control weighting may be used to control a non-invertible plant
- Admissible and meaningful choice of the weightings is the subject of current research
- Adaptation of the linear-case rules of thumb:
 - P_c normally high at low frequencies to guarantee integral action
 - F_c high at large frequencies to provide sufficient controller roll-off
 - properties close to those of LQG-type controllers
 - closed-loop bandwidth normally close to cross-over frequency of the open-loop system \rightarrow loop shaping

Design of the Weightings (cont.)

Consider Φ_{ck} linear and negative: $F_{ck} = -F_k$ Then $(P_c W_k + F_k) u = F_k \left(\underbrace{I + \frac{P_c}{F_k} W_k}_{F_k} \right) u$ return-difference operator for a feedback system with the delay-free plant and controller $\frac{P_c}{F_k}$

Consider the delay-free plant Ω_k and assume a PID controller K_{PID} exists to stabilize the closed-loop system.

Then a starting point for the weighting choice that will ensure the operator $(P_cW_k + F_k)$ is stably invertible is

$$\frac{P_c}{F_k} = K_{PID}$$

Special Case: Nonlinear MV Controller

Note that in the limiting case, for a square system, when $F_{ck} \rightarrow 0$ the optimal control signal becomes

$$u_{\rm mv}(t) = (P_c W_k)^{-1} R Y_f^{-1}(r(t) - d(t))$$

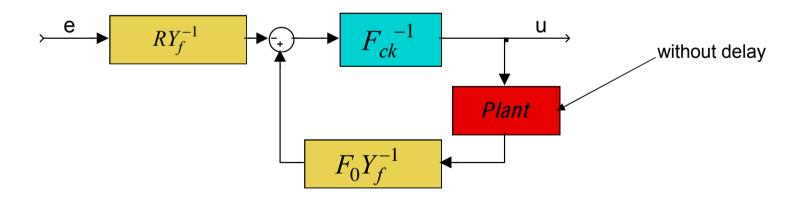
Clearly the *minimum variance* control for the nonlinear system includes the stable inverse of the plant model, when one exists.

Special Case: Actuator Saturation

$$\underbrace{\begin{array}{c} \mathbf{u} \\ \mathbf{u} \\$$

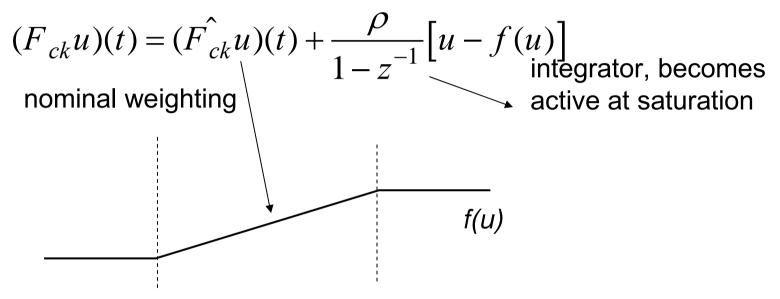
Problem: select <u>invertible</u> control weighting Φ_{ck} such that an anti-windup mechanism is achieved

Nonlinear GMV Controller



Actuator Saturation (cont.)

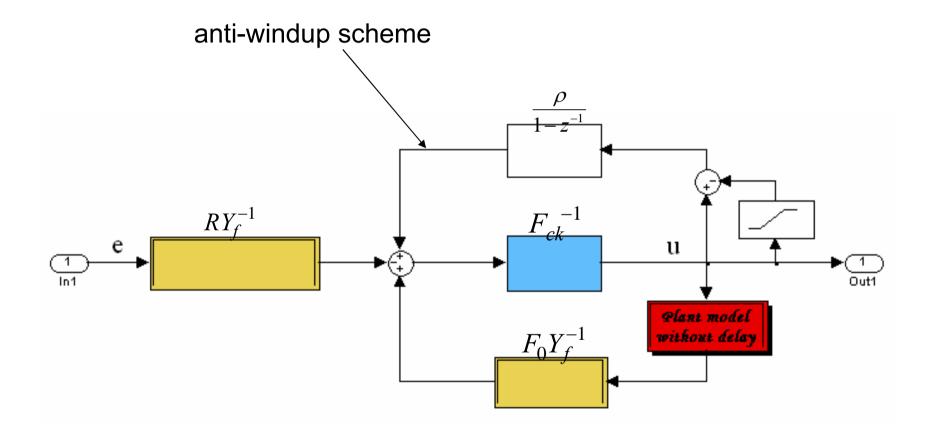
Control weighting choice:



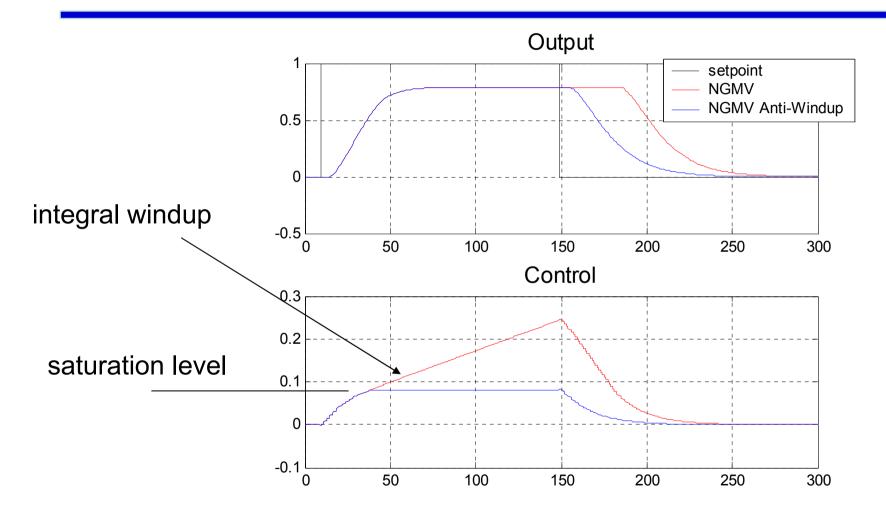
Control signal becomes:

$$\boldsymbol{H}(t) = F_{ck}^{-1} \left(F_0 Y_f^{-1} \left(W_k u \right) (t) - R Y_f^{-1} \boldsymbol{\varepsilon}(t) - \frac{\rho}{1 - \boldsymbol{z}^{-1}} (u - f(u)) \right)$$

Actuator Saturation – Block Diagram



Actuator Saturation - Example

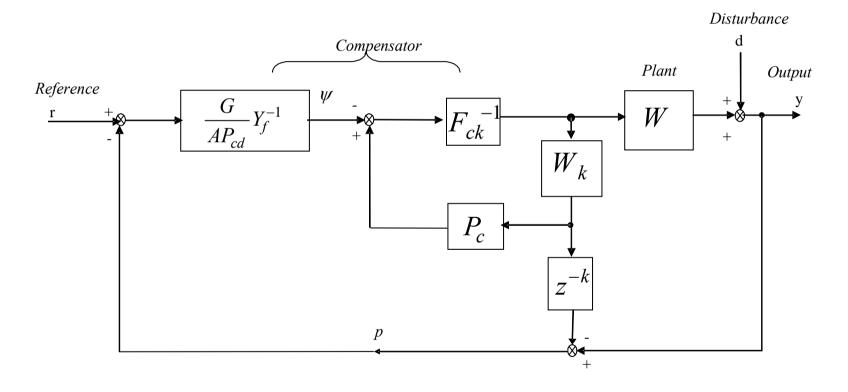


Nonlinear Smith Predictor

- Optimal NGMV controller can be expressed in a similar form to that of a Smith predictor
- Introduction of this structure limits the application of the solution on open-loop unstable systems
- The structure is intuitively reasonable and should be valuable in applications
- The Smith predictor results by rearranging the controller structure

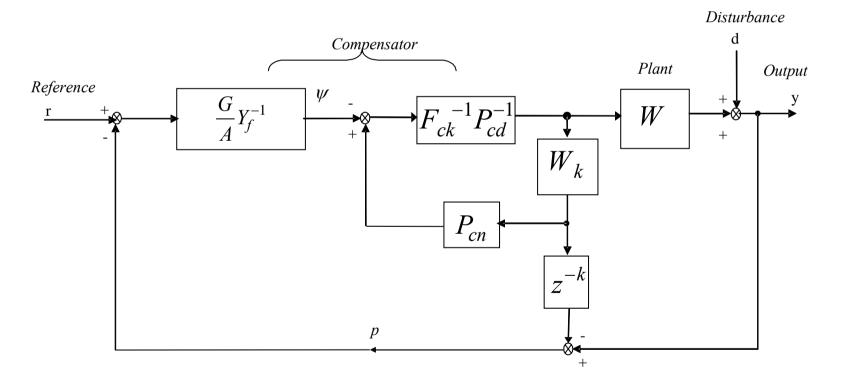
Nonlinear Smith Predictor

The control loop can be rearranged as follows:



Nonlinear Smith Predictor

When the error weighting P_c includes an integrator, it must be placed in the inner error channel:



Extensions

- NGMV Feedback, Feedforward and Tracking control
- Multivariable version \rightarrow time-delay matrix
- Modelling issues "Neuro-fuzzy NGMV control"
- State-space representation

- Introduction
- Review of the linear GMV control theory
- Nonlinear GMV controller
- Performance assessment against NGMV controller
- Simulation example
- Summary

Estimation of the Minimum Variance

NGMV controller cancels the (generalized) plant dynamics and the generalized output signal $\phi_0(t)$ is a moving-average time series:

$$\phi_0^{ngmv}(t) = F\varepsilon(t) = f_0\varepsilon(t) + f_1\varepsilon(t-1) + \dots + f_{k-1}\varepsilon(t-k+1)$$

The minimum variance (the benchmark) follows as

$$J_{\min} = Var[F\varepsilon(t)] = \sum_{i=0}^{k-1} f_i^2$$

This value depends only on the noise model and the plant time delay.

<u>Problem</u>: estimate J_{min} from the collected closed-loop data.

"Harris Algorithm"

Harris (1989) and Desborough and Harris (1992, 1993):

- model the controller-dependent part of the output as AR time series
- estimate the minimum variance as the residual error variance

The generalized algorithm applies to the signal $\phi_0(t)$ rather than y(t):

$$\phi_0(t) = F\varepsilon(t) + \sum_{i=0}^m \alpha_i \phi_0(t-k-i)$$

Collect N samples of data and \tilde{w} rite in matrix form:

least-squares solution

$$\overline{\phi} = X\overline{\alpha} + \overline{\varepsilon} \qquad \longrightarrow \qquad \overline{\alpha} = (X^T X)^{-1} X^T \overline{\phi}$$

Minimum variance estimate: $\hat{\sigma}_{mv}^2 = \frac{1}{N-k-2m+1} (\overline{\phi} - X\overline{\alpha})^T (\overline{\phi} - X\overline{\alpha})$

FCOR Algorithm

Huang and Shah (1999): Filtering and Correlation algorithm

- model the output as an AR time series and estimate the white noise generating sequence (*innovations sequence*)
- correlate the obtained white noise with the output

As applied to the generalized signal $\phi_0(t)$:

Whitening process:
$$\phi_t = \frac{1}{A(q^{-1})} \mathcal{E}_t \implies \mathcal{E}_t = A(q^{-1}) \phi_t$$
Cross-correlation: $r_{\phi \varepsilon}(0) = E[\phi_t \mathcal{E}_t] = f_0$ $r_{\phi \varepsilon}(1) = E[\phi_t \mathcal{E}_{t-1}] = f_1$ MMMinimum variance: $I_{\min} = \sum_{i=0}^{k-1} f_i^2$

Controller Performance Index

For the existing controller

$$J = Var[\phi_0] \ge J_{\min}$$

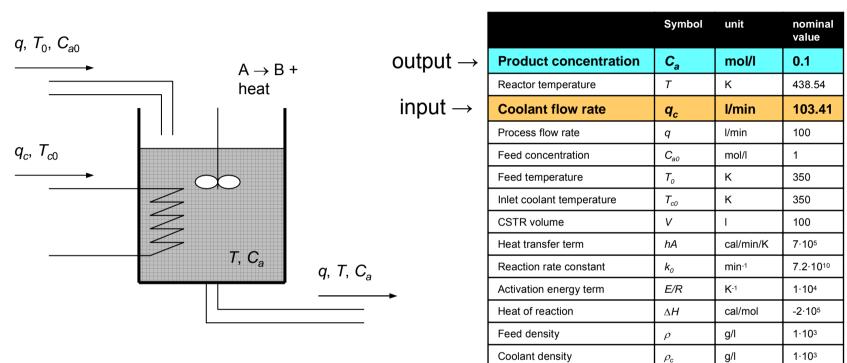
Definition of the Controller Peformance Index:

$$\kappa = \frac{J_{\min}}{J} \oint_{0}^{1} (\text{NGMV control})$$

"Harris index"

- Introduction
- Review of the linear GMV control theory
- Nonlinear GMV controller
- Performance assessment against NGMV controller
- Simulation example
- Summary

Continuous Stirred Tank Reactor



Energy balance equation $\mathcal{P}(t) = \frac{q(t)}{V} (T_0 - T(t)) + \frac{\Delta H}{\rho C_p} k_0 C_a(t) \exp\left(-\frac{E/R}{T(t)}\right) + \frac{\rho_c C_{pc}}{\rho C_p V} q_c(t) \left[1 - \exp\left(\frac{-hA}{\rho_c C_{pc} q_c(t)}\right)\right] (T_{c0} - T(t))$

Material balance equation

Feed specific heat

Coolant specific heat

$$\mathcal{C}_{a}(t) = \frac{q(t)}{V} \left(C_{a0} - C_{a}(t) \right) - k_{0}C_{a}(t) \exp\left(-\frac{E/R}{T(t)}\right)$$

 C_p

 C_{pc}

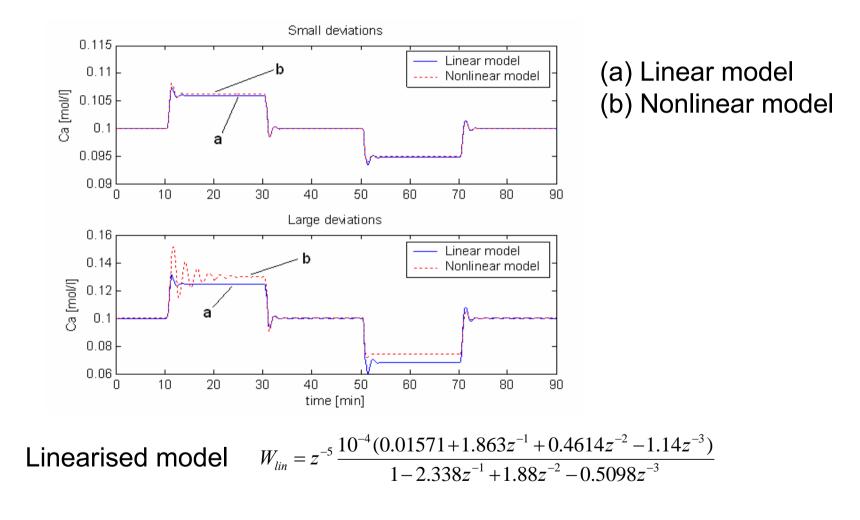
cal/g/K

cal/g/K

1

1

Open-Loop Step Responses



Optimal Controller Design

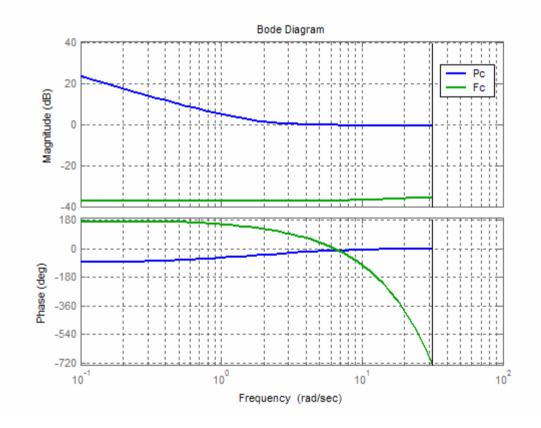
Disturbance model:

 $W_d = \frac{0.001}{1 - 0.95z^{-1}}$

Dynamic weightings:

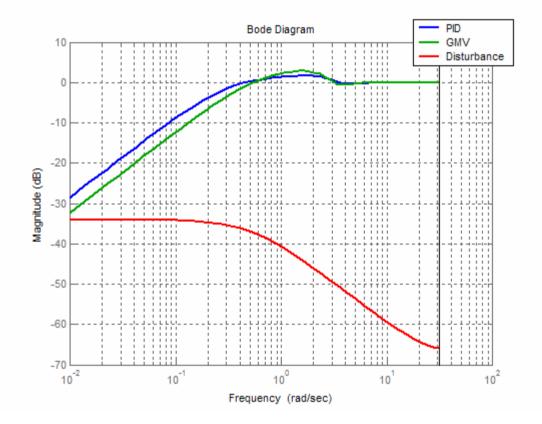
 $P_{c} = \frac{1 - 0.85z^{-1}}{1 - z^{-1}}$ $F_{ck} = -0.015(1 - 0.1z^{-1})$

Frequency response of the weightings



GMV Controller Design

Sensitivity function plots for the PID and the linear GMV controller



Stochastic Performance

C _a [mol/l]	Controller	Var[C _a]	Var[q _c]	Var[ø]
0.06	PI	9.687e-6	5.789e-1	5.088e-1
	GMV	8.212e-6	7.575e-1	7.886e-2
	NGMV	8.079e-6	7.780e-1	7.323e-2
0.1	PI	9.765e-6	2.683e-1	3.198e-1
	GMV	7.495e-6	3.496e-1	7.315e-2
	NGMV	7.487e-6	3.498e-1	7.318e-2
0.12	PI	8.770e-6	2.083e-1	2.647e-1
	GMV	2.386e-5	3.418e-1	2.375e-1
	NGMV	7.536e-6	2.591e-1	7.229e-2

Benchmarking Results

Controller	Method	Jmin	J	eta
PI	Harris	7.301e-2	3.202e-1	0.228
	FCOR	7.253e-2	3.201e-1	0.227
GMV	Harris	7.329e-2	7.320e-2	1.001
	FCOR	7.304e-2	7.319e-2	0.998
NGMV	Harris	7.336e-2	7.323e-2	1.002
NGMV	FCOR	7.310e-2	7.322e-2	0.998

Controller	Method	Jmin	J	eta
Ы	Harris	7.339e-2	5.105e-1	0.144
	FCOR	7.296e-2	5.104e-1	0.143
	Harris	7.340e-2	7.896e-2	0.930
GMV	FCOR	7.315e-2	7.895e-2	0.927
NGMV	Harris	7.339e-2	7.330e-2	1.001
	FCOR	7.316e-2	7.329e-2	0.998

Benchmarking results (operating point $C_a=0.06 \text{ mol/l}$)

Benchmarking results (operating point $C_a=0.12 \text{ mol/l}$)

Controller	Method	Jmin	J	eta
PI	Harris	7.185e-2	2.665e-1	0.270
	FCOR	7.159e-2	2.665e-1	0.269
GMV	Harris	7.966e-2	2.386e-1	0.334
GIVIV	FCOR	7.949e-2	2.386e-1	0.333
	Harris	7.213e-2	7.242e-2	0.996
NGMV	FCOR	7.204e-2	7.241e-2	0.995

Comments on the Results

- NGMV shows best performance over the whole operating range
- While the linear GMV control adequate for small deviations from the nominal operating point, its performance degrades when away from it
- Overall performance of the existing PI controller remains relatively unchanged compared with the linear GMV controller – this is due to greater robustness of this simple controller
- Transient performance comparable; NGMV more robust than linear GMV away from the operating point

- Introduction
- Review of the linear GMV control theory
- Nonlinear GMV controller
- Performance assessment against NGMV controller
- Simulation example
- Summary

Summary

- Simple nonlinear control algorithm introduced
- Generalization of the established linear GMV controller
- Anti-windup mechanism easily incorporated
- Can be represented in the "nonlinear Smith predictor" form
- Candidate for a benchmark controller