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Introduction

� Minimum variance is the most popular stochastic           

benchmark: simple, meaningful, easy to calculate

� Comparison against the best possible linear controller

� However, all real plants are nonlinear

� Need for high performance control over wide operating 

range → nonlinear control

� Introduction of NGMV � a new simple nonlinear controller



Minimum Variance Control � a few dates

Åström: MV controller for linear minimum phase plants

Clarke & Hastings-James: Generalized MV criterion

Grimble: GMV control law revisited

1970

2003

Huang & Shah: MIMO MV benchmarking

1971

1975
1988

1992

Grimble: GMV benchmarking

Grimble: Nonlinear GMV control

Harris, Desborough: MV benchmarking, �Harris� index

Clarke & Gawthrop: Self-tuning GMV controller

1999

2002
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LTI System Model
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Spectral Factorisation

Aim: combine all the stochastic inputs into one noise signal
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Minimum Variance Control

To minimize: output variance 2[ ( )]MVJ E y t=
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k
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Diophantine equation

MV controller works when:
� the plant W is invertible (minimum-phase)
� reference and disturbance models are representative of the actual 
signals entering the system



Generalised Minimum Variance Criterion

To minimize: variance of the �generalized� output φ0(t):
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Generalized plant
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GMV Controller

MV control of the plant (PcW � Fc ):
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Optimal GMV control:

Polynomial solution:



GMV Controller Implementation
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Nonlinear System Description

Disturbance model: (assumed linear) 1= fd dW A C−

Reference model: (assumed linear) 1 fr rW A E−=

( )( ) ( )( )-k
ku t z u t=W WNonlinear plant  model:
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Plant Model
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It can include both linear and nonlinear components,
e.g. Hammerstein model:

u y

( , ) 0f u y =

Just need to obtain the output to given input signal

Nonlinear plant model may be given in a very general form, e.g.:
� state-space formulation
� neural network / neuro-fuzzy model
� look-up table
� Fortran/C code



Nonlinear GMV Problem Formulation

( ) ( )( )0 ( ) c ct P e t u tφ = + F

� Control weighting invertible and potentially nonlinear to 
compensate for plant nonlinearities
� The weighting selection is restricted
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Nonlinear GMV Problem Solution
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The approach also similar:

Optimal control:
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Nonlinear Operator and its Inverse
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� Control weighting assumed invertible
� For the closed-loop stability, the nonlinear operator must be invertible 
in the operating region
� Problem: algebraic loop



Algebraic Loop

→ split the nonlinear operator into two parts involving a delay-free 
term Ν0 and a term that depends upon past values of the control 
action Ν1: ( ) ( ) ( )0 1( ) ( ) ( )c k ckt P u u t u t= − = +ψ W F N N
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Problem solutions:
� solve the loop iteratively on-line
� introduce an additional delay in the loop
� transform into equivalent problem:



Controller Implementation
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Bias and Steady-State Levels

� So far the assumption was on zero mean exogenous signals
� Behaviour at an operating point of interest

Signal notation: x x x= + %

bias deviation
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Design of the Weightings

� Restriction on the choice of weightings: invertibility of the nonlinear 
operator

( )c k ckP − kW F

� Control weighting may be used to control a non-invertible plant

� Adaptation of the linear-case rules of thumb:
� Pc normally high at low frequencies to guarantee integral action 
� Fc high at large frequencies to provide sufficient controller roll-off
� properties close to those of LQG-type controllers
� closed-loop bandwidth normally close to cross-over frequency of 
the open-loop system → loop shaping

� Admissible and meaningful choice of the weightings is the subject 
of current research
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Design of the Weightings (cont.)

ck kF= −FConsider Φck linear and negative:

Then

return-difference operator for a feedback system 
with the delay-free plant and controller

Consider the delay-free plant Ωk and assume a PID controller KPID
exists to stabilize the closed-loop system.

Then a starting point for the weighting choice that will ensure the 
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Special Case: Nonlinear MV Controller

Note that in the limiting case, for a square system, when 0ck →F
the optimal control signal becomes

( ) ( ) ( ) ( )( )1 1
mv c k fu t P RY r t d t− −= −W

Clearly the minimum variance control for the nonlinear 
system includes the stable inverse of the plant model, when 
one exists.



Special Case: Actuator Saturation
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Actuator Saturation � Block Diagram

anti-windup scheme

1
ck
−F

1
0 fF Y −

1
fRY −

11 z
ρ

−−



0 50 100 150 200 250 300
-0.5

0

0.5

1
Output

0 50 100 150 200 250 300
-0.1

0

0.1

0.2

0.3
Control

setpoint
NGMV
NGMV Anti-Windup

Actuator Saturation - Example

integral windup

saturation level



Nonlinear Smith Predictor

� Optimal NGMV controller can be expressed in a similar 

form to that of a Smith predictor

� Introduction of this structure limits the application of the 

solution on open-loop unstable systems

� The structure is intuitively reasonable and should be 

valuable in applications

� The Smith predictor results by rearranging the controller

structure



Nonlinear Smith Predictor
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Nonlinear Smith Predictor

When the error weighting Pc includes an integrator, it must be placed 
in the inner error channel:
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Extensions

� NGMV Feedback, Feedforward and Tracking control

� Multivariable version → time-delay matrix

� Modelling issues � �Neuro-fuzzy NGMV control�

� State-space representation
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Estimation of the Minimum Variance
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NGMV controller cancels the (generalized) plant dynamics and the
generalized output signal φ0(t) is a moving-average time series:

The minimum variance (the benchmark) follows as

Problem: estimate Jmin from the collected closed-loop data.

This value depends only on the noise model and the plant time delay.



�Harris Algorithm�
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Harris (1989) and Desborough and Harris (1992, 1993):
� model the controller-dependent part of the output as AR time series
� estimate the minimum variance as the residual error variance

The generalized algorithm applies to the signal φ0(t) rather than y(t):

Collect N samples of data and write in matrix form:
least-squares solution

Minimum variance 
estimate:



FCOR Algorithm
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Huang and Shah (1999): Filtering and Correlation algorithm
� model the output as an AR time series and estimate the white noise 
generating sequence (innovations sequence)
� correlate the obtained white noise with the output

As applied to the generalized signal φ0(t):

Minimum variance:



Controller Performance Index

0 min[ ]J Var Jφ= ≥

�Harris index�

For the existing controller

Definition of the Controller Peformance Index:
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1     (NGMV control)
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Continuous Stirred Tank Reactor
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Material balance equation

Energy balance equation
1cal/g/KCpcCoolant specific heat 

1cal/g/KCpFeed specific heat

1·103g/lρcCoolant density

1·103g/lρFeed density

-2·105cal/mol∆HHeat of reaction

1·104K-1E/RActivation energy term

7.2·1010min-1k0Reaction rate constant

7·105cal/min/KhAHeat transfer term

100lVCSTR volume

350KTc0Inlet coolant temperature

350KT0Feed temperature

1mol/lCa0Feed concentration

100l/minqProcess flow rate

103.41l/minqcCoolant flow rate

438.54KTReactor temperature

0.1mol/lCaProduct concentration

nominal 
value

unitSymbol

input →

output →



Open-Loop Step Responses

4 1 2 3
5

1 2 3

10 (0.01571 1.863 0.4614 1.14 )
1 2.338 1.88 0.5098lin

z z zW z
z z z

− − − −
−

− − −

+ + −
=

− + −
Linearised model

(a) Linear model
(b) Nonlinear model



Optimal Controller Design
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GMV Controller Design

Sensitivity function plots for the PID and the linear GMV controller



Stochastic Performance
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0.1
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Benchmarking Results

Benchmarking results (nominal operating point)

0.9987.322e-27.310e-2FCOR

1.0027.323e-27.336e-2Harris
NGMV

0.9987.319e-27.304e-2FCOR

1.0017.320e-27.329e-2Harris
GMV

0.2273.201e-17.253e-2FCOR

0.2283.202e-17.301e-2Harris
PI

etaJJminMethodController

Benchmarking results (operating point Ca=0.06 mol/l)

0.9987.329e-27.316e-2FCOR

1.0017.330e-27.339e-2Harris
NGMV

0.9277.895e-27.315e-2FCOR

0.9307.896e-27.340e-2Harris
GMV

0.1435.104e-17.296e-2FCOR

0.1445.105e-17.339e-2Harris
PI

etaJJminMethodController

Benchmarking results (operating point Ca=0.12 mol/l)

0.9957.241e-27.204e-2FCOR

0.9967.242e-27.213e-2Harris
NGMV

0.3332.386e-17.949e-2FCOR

0.3342.386e-17.966e-2Harris
GMV

0.2692.665e-17.159e-2FCOR

0.2702.665e-17.185e-2Harris
PI
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Comments on the Results

� NGMV shows best performance over the whole operating range

� While the linear GMV control adequate for small deviations from the 

nominal operating point, its performance degrades when away from it

� Overall performance of the existing PI controller remains relatively 

unchanged compared with the linear GMV controller � this is due to 

greater robustness of this simple controller

� Transient performance comparable; NGMV more robust than linear 

GMV away from the operating point
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Summary

� Simple nonlinear control algorithm introduced

� Generalization of the established linear GMV controller

� Anti-windup mechanism easily incorporated

� Can be represented in the �nonlinear Smith predictor� form

� Candidate for a benchmark controller


