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The Measurements of Success
The following excerpt from Ahmad & Benson (1999)[1] describes what is
a world-class  process plant:

A world-class process manufacturing plant delivers outstanding
custom service from reliable assets exhibiting operational
excellence. It is operated by highly-motivated people and always
maintains its licence to operate by satisfying the high safety and
environmental standards of the process industries.

[1]. Ahmad, M  & Benson , R (1999)  Benchmarking in the process industries. IChemE, Rugby. U.K. 

• Custom service:  On time full delivery (OTIF), customer complaints, due date
reliability, stock turn

• Motivated People:  Absenteeism, training days, staff turnover.

• Safety, health and environment

• Reliable assets:   Production rate, quality rate, availability,

• Operational excellence:  Statistical process control,  Manufacturing velocity

The process measurements can be summarised into the following categories:



The Technical Benchmarking Process

The need for technical process benchmarking is determined by the
business benchmarking. It  usually consists of  the following steps:

1. Find a technically and physically meaningful performance
metric. It should be translated from economic metrics.

2. Prioritise the sub-process which is critical to the metric.

3. Find the best controller which can achieve the best score for
this metric.

4. Analyse the causes for the gap in performance, i.e.  find out the
bottlenecks.

5. Provide solution/advice for improvements.



A Typical Plant-Wide Control Structure

 Fig.1 A typical layered plant-wide control
structure.
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Observations:
1. The plant is controlled in
a hierarchical manner.
2. The commands flow
from the top to the  bottom.
3. The upper layer provides
setpoints for the lower
layer.
4. The steady state
optimisation is performed
to optimise profits and the
whole operation should
follow this objective.
5. The information from the
lower layer is used as
constraints in the upper
level optimisation.



Some Thoughts on Static Optimisation
1. Problem formulation:

1. Economic cost function .
2. The cause/effect relationship between input/output
3. The constraints.

2. What is involved in the optimisation?

3.The central piece of the above optimisation problem is the static plant
model:

1. It is time-varying, nonlinear.
2. It only includes the most important factors.
3. It represents the static relationships between input/output, i.e.
many dynamical properties are omitted during the modelling.
4. Identifying the most important factors requires a sound
understanding of the process.
5. The quality of this model decides the economic performance of
the plant.



The Desirable Output From Static Optimisation

Ideally, the optimisation should not only decide the value of set-
points but also decide the tolerable bounds around the set-points
such that the cost function will not change much within the
bounds.
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An Alternative Control Structure

Model Predictive Control Structure.

Plant-Wide Optimisation

MPC with set-point on cost

DCS PID Controls

Plant

Economic
Optimisation

Fig 2. MPC with dynamic optimisation.

Optimisation formulation:

Since economic benefit is an
integrated part of the criterion, this
function may not be in the quadratic
form, it may even include non-linear or
discrete terms.

Remarks:



Soft/Hard  Constraints
The optimisation problems formulated before are constrained optimisation
problems.

In many cases, the optimal
solutions are obtained with some
constraints active.

Question 1: Can we push these constraints further?

Two types of constraints:
• Hard constraints: the one can not be changed by re-tuning controller.
• Soft constraints: the one can be changed by controller tuning.

By controller benchmarking,  this question can be answered.

Fig 3. Static constrained optimisation.



Controller Benchmarking for Profit Optimisation

The prioritisation of re-tuning control loop(s) can be formulated
as another optimisation problem:

Question 2: Do we need to retune the controller?

Remarks:

1.           should  be defined by discussing with the industrial partners.
2. By  focusing on the active constraints, we can  identify the critical control
loops or subsystems which have the biggest impacts on the plants’ economic
performance.
3. We only need to benchmark the subsystem related with the active
constraints. The benchmarking problem becomes  manageable.
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Proposed Procedure of  Optimisation

Start

 Fault Detection
Isolation

Can the process operate
 under these conditions?

Set points selection 
based on historian

Searching for better 
set-points (EVOP)

Active Constraints analysis/
controller benchmarking



SUB-PROCESS SUB-PROCESS

SUPERVISOR

SUB-PROCESS
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3

MC MC MC

MIMO systems contain loop interactions and recycles
• Optimising each loop , might lead to system instability
• SISO benchmarking indices cannot be extended to the

MIMO case
• MIMO benchmark for overall sub-process required

Why a MIMO Benchmark



Extension to multivariable systems is generally nontrivial. Possible
difficulties are a result of:

• interactions between loops

• loops need to be prioritised to obtain desired objective

•performance is also dependent on control structure
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Benchmarking of Multivariable Processes



• Require an index that captures both transient and
steady state performance

• For steady state variance is a good KPI

• For step changes, the KPI’s directly influence the
integral square error (ISE) of the process

• The Optimal benchmarking function should measure
the (ISE) and some weighted combination of variances

• An LQGPC cost function would provide the criteria
required to benchmark the process

Benchmarking Multivariable  Processes

Optimal Benchmark Function



• The LQGPC Cost Function can be expressed as

                where

Properties of LQGPC Optimisation
• The objective of the GPC function (Jt ) is to minimise the sum of the

squares of predicted system outputs and inputs.

• The function (Jt) is quadratic, so where a solution exist, it is unique.

• Minimising (Jt ) optimise the predicted system trajectory from time (t+1)
to (t+N), for a given initial state at time t.

• Minimisation is done with the assumption that ∆ut+j  for j > N+1 is zero,
i.e system reaches steady state.

Assumption may not be valid for some choices of  N
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Multivariable Predictive Benchmarks



• Because the optimisation of (Jt ) is finite (t+1 to t+N, N <  ∞), there is no guarantee
that the system trajectory from t = 0 to t = ∞, is optimal for some Ut,N

• The LQGPC function (J) takes infinite sum of indices Jt ensuring that for any time
instance t, the sequence Ut,N is optimised to ensure that the path from

•  t = 0 to t = ∞, is optimal
• Notice that, because of the integrator (∆ut ), the system terminal state (i.e. t=∞)

xt+N+1 (in the absence of noise) or its mean value (in the presence of noise) at (t+N)
must be the same for any controller with integral action

U0,N

UN+1,2N

U∞-N, ∞   A controller Trajectory

  LQGPC Trajectory
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Multivariable Predictive Benchmarks



• Consider the system

• Create benchmark system
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• Optimal Controller
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•System Under Optimal Control:-Then at each time instance t,
• The process follows an optimal state trajectory, that drives the output

to the desired level
• Trajectory is guaranteed to provide smallest value of cost and use the

least amount of energy
• once on this trajectory the state require minimum power to remain /

follow the trajectory

•System Under Non-optimal Control:-Then at each time
instance t,

• State trajectory is sub-optimal, however the system may still arrive at
the desired output level

• Energy is wasted in arriving at the desired output level
• Ultimately it cost more to follow this trajectory than the optimal state

path

A Feasible Predictive Benchmark



• Ideally predictive benchmarking measures the energy differential
between the predicted trajectory of the sub-optimal control and the

predicted optimal trajectory.
• In both cases the prediction is over a finite horizon of N steps.
• The benchmark is therefore calculated for each time instance

– We do not have the predicted trajectory of the sub-optimal controller, but it’s
actual trajectory.

• Instead we can measure the amount of work required by the ideal
predictive controller at each time instance (t) to go from some state of the

process under sub-optimal control to the desired terminal state in the
interval (t+1,t+N).

– The more sub-optimal the controller, the greater the amount of work required.
– This benchmark is a measure of the predicted amount of wasted energy in the

system in the interval (t+1,t+N).
Practically, to do it, assume that at each time instance  t, the process is

controlled by a controller which may/may-not be optimal. But at time t+1,
the process is switched onto optimal control

A Feasible Predictive Benchmark



Consequently, this benchmark assumes, at the time instance t+1
(predicted), switching between the controllers

• Switching between Two Optimal Controllers
– The controller in control of the process requires no additional power to keep the

system on the optimal state trajectory
– The total energy used (between the two controllers)  is equal to the minimum

required to drive the output to the desired level
– The value of the cost is unchanged

• Switching between Non-optimal and Optimal Controller
– The optimal controller will require additional power to bring the system state into

an optimal state trajectory
– Energy is wasted in correcting the state path to follow the optimal trajectory
– The total energy used between the two controllers is greater than the minimum

required to arrive at the desired output

A Feasible Predictive Benchmark



A Feasible Predictive Benchmark

0 t t+
k

t+k+Nt+
N

Graphic Example of Optimal Trajectory
Correction

(at time t and t+k)



"UnBiased" Estimate of Wasted Energy "Biased" Estimate of Wasted Energy

System:

      Controller:
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Pilot-scale binary distillation column model used
for methanol-water separation

• Controller 1: Multi-loop PID controller designed
using modified Ziegler-Nichols

• Controller 2: De-tuned multi-loop controller

     Multivariable Predictive Benchmarking
 Example
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• Steady State and Transient Benchmark of
Controller 1

     Multivariable Predictive Benchmarking
 Example
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• System Trajectories
      (Rear and Side views)
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• Trajectory patterns are similar
• Track closely at steady  state (index close to 1)
• Marked  differences in transient (index approaches

0)

LQGPC

Multi-Loop



• Mulit-Loop System
Trajectories

      (3-D views)

• LQGPC System Trajectories
      (3-D views)

• Super Imposed Trajectories

        deeper  troughs

• Super Imposed Trajectories

       high peak



• Steady State and Transient Benchmark of
Controller 2

     Multivariable Predictive Benchmarking
 Example

• System Trajectories
      (Rear and Side views)

• Trajectory patterns are dissimilar
• Marked  differences in transient, sluggish transient

(index approaches 0)
• Performance improves towards steady  state (index

approaches 1)

LQGPC

Multi-Loop
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• Mulit-Loop System
Trajectories

      (3-D views)

• LQGPC System Trajectories
      (3-D views)

• Super Imposed Trajectories

much deeper  troughs

 high peak and broad spread



Conclusions

Hierarchical structure of industrial control systems require
hierarchical benchmarks

The identification of active constraints can help to
prioritise the control loops

MIMO benchmarking is critical for proper assessment of
interacting control loops

LQGPC performance has been used to consider dynamic
performance measures of MIMO systems


