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Introduction: MIMO Benchmarking

« Minimum variance benchmark and “Harris index” have become
widespread over the last decade

* MV control rarely used but MV benchmark still useful

 GMV controller proposed as an alternative benchmark

« So far focus mostly on SISO performance

» But most processes involve interactions between a number of

control loops ? MIMO benchmark better
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Controller Structures

Controller Plant
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« Benchmarking against optimal controllers does not take into
account the existing controller structure

» Restricted-structure controller approach: compare against the best
actually achievable controller

« MIMO RS approach may have other useful applications such as
optimal I/O pairing and structure assessment
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Multivariable Control System Description

¢ & - White noise vectors k

Wd Disturbance
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Reference Controller Plant

e =r—Y,=S.(z")(r,—d,) - control error

System matrix fractions
W(zY) = Atz HB(ZY) u, =Cy(z7)S,(z7)(r, - d,) - control signal
Ny | -1
VVI’(Z )_A (Z )Er(z ) Sr :(Ir+WCO)—1
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Plant Delay Structure

Interactor matrix (IM) — generalization of the scalar time delay
Fundamental performance limitation in the system

SISO MIMO

YO =T(Z M) =2 T @ u() YO =TEYO=DTEHUW

] iImD(z)-T(z') =K, Kfiniteand full rank
||lmzk-T(z‘1):k, k=0 IZILTO]

727 -0

det{D(z)}=z", k-numberof infinite zeros

* Interactor matrix characterizes the infinite zeros of the system
* It is often diagonal, but generally it may be a full matrix

* Interactor matrix of the system is not unigue:
* [ower triangular IM (Wolovich and Falb 1976)
 nilpotent IM (Rogozinski et al. 1987)
« unitary IM (Peng and Kinnaert 1992)




Performance Criteria

GMV cost function:  Jg,,, =Var{4}, ¢ =Pe+Fu,

LQG cost function:  J ¢ = o Cﬁ trace{Q, P, + R (Duu}
|z|=1

+ simpler + guaranteed stability

- restriction on the - more involved
weightings
+ data driven + “classical” optimal

- Interactor matrix needs benchmark
to be known or estimated |- full model needed




GMV Control: Generalized Plant

Minimum Variance Control;

y,=D7Tu,+N&| = ¢ =0"Dy,=q*Tu,+q*DN¢&

N

Generalized Minimum Variance Control:

¢ =Pe +Fu =P (D'Tu,+N&)+Fu =(P.D"'T +F)u, +PN¢& =

=D, 'T,u, +N & D, unitary

Interactor filtering: &t . q‘kDg¢t = q_kfgut + N~g§t

Var {¢,} =Var {é}




Multivariable GMV Controller

Main result:

J=J_. +J,
/ \ suboptlmal term

i; trace{F" F} §trace{x X}
21 iy 27 74
minimum achievable value
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Diophantine equations optimal controller




MIMO GMV Benchmarking

Benchmarking procedure — FCOR algorithm (Huang and Shah 1999)

IR IR B o T SR B
: _ '.f.\ l,“f' [ I 41
. ! y lll\l. rll‘,, il rﬁi ce Controller ant

€= A(Z_l)¢t = ¢ = A_l(z_l) S e — ¢t = Pcet + Fcut

whitening filtering

J .
A S P
E[¢t—j Et] - FJ! J =0,..., k_l 77 Var[¢t]

correlation



e Restricted-structure controllers



Motivation

Often a need for relatively unskilled staff to tune
controllers and this implies low order controllers
needed.

Low order controllers often have improved robustness
properties relative to high order designs.

Often a requirement to have the good control action of
advanced designs within a controller structure that is
simple.

Nonlinear systems can be linearised at operating points
and multiple model RS controllers designed

Optimal RS controllers can be used as realistic
benchmarks; however, model needed in this case




Reduced Controller Structures

SISO level MIMO level

p
Reduced order: CO(S):Cno+cnls+...+cnps
Cdo +Cy1S+.+CqyS"

CO
where v = p is less than the order of { - CJ
the system (plus weightings)

Diagonal:

Triangular:
(Cn0+Cn15)(Cn2+Cn33) C Cu Cpy
Lead lag: Co(s)=

J (Cdo +Cq15)(Cg2 +Cg35) G G

PID: CO(S)Zko-i-kl/S-i-sz Full:
Cll ClZ Cl3
- k., ks C, C, C
Filtered PID: C.(s)=k, +-Lt+—2 { a Cn Gy
O() s rs+1 C, C, C,

The assumption must be made that a stabilising control law exists for the
assumed controller structure.




Restricted-Structure Design Issues

 MIMO structure: choice of input/output variables, 1/0O
pairing, additional couplings (can use the existing
structure)

» Restricted controller structure for each element of the
transfer-function matrix

e Optimality criterion - e.g. GMV, LQG, H cost functions
* Optimization algorithm (how to find the “optimal”

controller parameters)



RS-LQG Control — SISO Case

Stochastic System Description

4y _ B
k e
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RS-LQG Control — SISO Case

Step 1: Design full-order optimal controller

D
* Introduce an innovations model for the signal: f=r-d=Y¢= ng

of unit variance
::> e = SYf(C; and u-— COSYfg

D.D; =B"A’'B,B,AB+AAB/BAA D.G + FAA, = BAQ,D,
D,H —FBA = AAR D,

\ / Diophantine equations

Spectral factorization

Suboptimal component:
1 * dZ J J T HAqCOH GAFCOd
Jo=— ¢T, T, — 0=

27 I2=1 Z AqAr(ACOd +BCy,)




RS-LQG Control — SISO Case

Step 2: Restricted-structure optimization problem

The optimal controller must be chosen in such a way that J, is

minimized:
Mln J T = HAqCOn_GArCOd
{Ko Ky Ky} " AA(AC, +BC,,)
k, k(1 z‘l)

subject to the controller structure: C,(z7) =k, +
1-z7% 1-oz™

1 ) . . T 27T . »
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Optimization

Min J,

1Ko ke ko }

e This is a nonlinear optimization problem and generally
does not have a closed analytical solution

e [terative numerical solution required
e Successive approximation / Edmunds’ algorithm
« Gradient methods / Optimization toolbox

e Search algorithms (genetic, evolutionary etc.)



RS-LQG: Successive approximation

Start: initialize C,

N : .
l‘ |\4|n ZTO (ela)iTs )To (e—Ja)iTS )AC()I
Calculate denominator of T, ° =l
i T = HAqCOn ~GA Gy,
Minimize w.r.t. C, assuming 0~ AqAr (ACOd N BCO )

constant denominator

Solution converged
OR
Maximum No. of
iterations reached?

yes

=

no \

least squares

Return C, and stop minimization




RS- LQG: Successive Approximation

N . . _
l Mln ZTO (e Jo T )TO (e—Ja)iTs )Aa)l To _ HAqCOn C;ArCOd
C, 4
Minimize w.r.t. C, assuming =1 AA (ACoq +BCon)
constant denominator :
| PID Controller (linear w.r.t. parameters):
l Con () = a5 (27 )ko + ey (27K, + (27K, Cos = (- Z_l)(l_ az_l)

» Choose the frequency range and number of frequency points N
» For all frequency points calculate all elementsof Fand L: T, =Fx—-L

, i) fi(@)  fi(e) ] L) |
where: ; : : :
r r r r _ T
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file) fhle) fi(e) Ly, (@)
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« Calculate optimal X: X" =(F' F)"F'L




Multivariable RS-LQG Control Design

« Similar procedure can be applied to design the optimal RS-LQG

controller in MIMO case
» The suboptimal cost function component to be minimized becomes:

K, K ,(1- z‘l)
1-z77 1-az™

j? trace{ X X}— C,(zH) =K, +
ﬂ] |z|=1

where 4 1 a1 =
X :(GDz Aq COd - HD3 Ar COn)(ACOd + BCOn) Df

can be represented as a transfer-function matrix.

 J, IS a scalar so gradient and search algorithms can still be applied

to find the optimal solution
* the successive approximation algorithm can also be generalized and

least squares solution used




Multivariable RS-LQG Benchmarking

The procedure:

(1) Specify the restricted structure — e.g. multi-loop with PID
controllers

(2) Find the RS controller by minimizing J,

(3) Calculate the minimum value of J,

I =—— 36 trace{xoptxopt}
(4) Calculate this value “for the existing controller structure
Jot =— §> trace{X X t}
2 i act““tac opt
£ = ‘]min + 'JO

act
(5) Calculate Controller Performance Index ——> J...+J;

min




Multiple models

» Above algorithms valid for linear system description
» However, real systems are inherently nonlinear
* One possible solution:
> use a number of linear models defined for different
operating points

operating range (or uncertainty region)
RS1 |RS2 |RS3 RS4 RS5 RSn

<

Simple or weighted average
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Multivariable Interactive Control System

1 Wll ’Q
W21
effective process / .
controlled by C, W,
I, W y2>
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Issues in the Multivariable Control Design

« Selection of the variables to be controlled
» Choice of the manipulated variables

e Interactions between loops

» Self-regulatory v. non-self regulatory loops
* /O pairing

e Joint stability regions may shrink!

e Decoupling v. multivariable control



/O Pairing and Relative Gain Array

* Problem of the “best” choice of input/output pairs for a multi-loop
control system

» Relative Gain Array (Bristol 1966) widely used in industry

» Steady-state gains required (deviations about operating point) —
obtained from step tests or from the linear model

* Relative Gain Array defined as

RGA=(K™)' ®K
element-by-element product

where K is the matrix of static gains between all inputs and all outputs




/O Pairing and Relative Gain Array

 RGA close to unity = desired pairing with no
Interactions

* RGA close to zero = pairing should be avoided
 All elements approx. equal = strongest possible
Interactions

e Results might be against “conventional wisdom”

» Takes into account only steady-state information



Application of RS Design to I/O Pairing

For a 3x3 MIMO system, the following multi-loop PID control
configurations are possible:

PID
A)

PID
PID

B)

[ PID

PID

PID

PID |

C)

F)

PID

PID

PID

PID |

PID

PID
D)| PID E) PID
PID | PID

» Using RS design technique it is possible to determine the optimal
structure in terms of the specified cost function (takes into account
also dynamic properties of the system)

* A means of optimally tuning the controllers

e Requirement: full dynamic model of the system

 PID




Application of RS Design to Structure Assessment

The controller structure is restricted on two levels, e.g.

PI PI PID PD PID PID PID

a) PI b) Pl P c)| PID PID PID

PID PID PID PID PID
Multi-loop Triangular Full PID structure

» Possible to determine potential benefits that may result from
adding additional controllers to the multi-loop system

* When already decided on a particular structure, the optimal
controller parameters readily available
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Example: regulatory control of a simple 2x2 system with time delays

System Model

(Huang & Shah 1999)

Plant model:

Z—l

-2
K.,z

0.3z7*

1-0.4z7"

1-0.1z71

Z—2

1 1-0.1z71

Parameter K,, determines interaction between input 2 and output 1.

1

Disturbance model:

—0.6

1-0.527"
0.5

1-0.5z"
1

1-0.827" |

| 1-0.5z7"

The plant has a general interactor matrix D:

y

—0.9578z
0.2873z°

—0.2873z
~0.9578z°

1-0.5z71




Estimation of the Minimum Variance

05-0.2z"
1-05z"

Existing controller: 0

C =
0 0.25-0.2z7"

(1-0.527)(1+0.527%)

Multi-loop minimum variance controller (calculated for each loop
separately)

Two choices of GMV weightings:

(1) MV weightings (2) Static GMV weightings

S

Interactor




Benchmarking Results

Output and control variances for different MV and GMV controller
values of K ,: performance indices
K., | Controller | Varly,] | Varly,] | Var[u,] | Var[u,] B .C”r?”””ETPerﬂ”rma?cege“. .
huft’ b b arke
0s =¥= Gh benchmark
06k
o
O
qui.-..._
g
—_
0.z h'“"---..* -}
L ey

a 1 2 3 4 ] f T g 4

» GMV criterion provides a means of balancing error and control variances

* It also makes the benchmark realizable (the plant is non-minimum phase for
Kiz>2)

* MV benchmark close to 1 for small interactions

* the existing controller not so good if control variances considered

10 Ku



Restricted-Structure Controllers

Existing controller: filtered multi-loop PID tuned using Ziegler-Nichols
rules separately for each loop.

The following RS-GMV controllers have been designed using the
GMYV weightings as in the previous slides:

RS full RS diagonal #1 RS diagonal #2
PID PID PID PID
PID PID PID PID

RS upper triangular RS lower triangular

"

PID
PID PID PID




RS Benchmarking Results

The existing multi-loop PID has been assessed against the RS

controllers:

Controller Js
Multi-loop PID 2.8026
RS full 0.0154
RS diagonal #1 0.0859
RS diagonal #2 0.5022
RS upper triangular | 0.0357
RS lower triangular | 0.0658

* The results show the potential
for improving the current
performance

* /O pairing: OK

o If further reduction in variance
required, additional feedback
between output 1 and input 2
(rather than between output 2
and input 1) would bring greater
Improvement
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Summary

 Benchmarking multivariable loops

« Benchmarking multi-loop controllers

» Detecting underperforming loops

« Tuning guidelines for the existing controllers

« Determining the optimal controller structure (1/0
pairing)



