

New Developments in Performance Assessment and Benchmarking

Presenter: Prof. Michael J. Grimble

Presentation prepared by: Pawel Majecki

Presentation Outline

- Introduction
- Multivariable controller design and benchmarking
- Restricted-structure benchmarking in MIMO case
- Structure assessment
- Simulation example
- Summary

Introduction: MIMO Benchmarking

- Minimum variance benchmark and "Harris index" have become widespread over the last decade
- MV control rarely used but MV benchmark still useful
- GMV controller proposed as an alternative benchmark
- So far focus mostly on SISO performance
- But most processes involve interactions between a number of

control loops? MIMO benchmark better

Controller Structures

- Benchmarking against optimal controllers does not take into account the existing controller structure
- Restricted-structure controller approach: compare against the best actually achievable controller
- MIMO RS approach may have other useful applications such as optimal I/O pairing and structure assessment

• Introduction

- Multivariable controller design and benchmarking
- Restricted-structure benchmarking in MIMO case
- Structure assessment
- Simulation example
- Summary

Multivariable Control System Description

System matrix fractions $W(z^{-1}) = A^{-1}(z^{-1})B(z^{-1})$ $W_r(z^{-1}) = A^{-1}(z^{-1})E_r(z^{-1})$ $W_d(z^{-1}) = A^{-1}(z^{-1})C_d(z^{-1})$ $e_t = r_t - y_t = S_r(z^{-1})(r_t - d_t) - \text{control error}$ $u_t = C_0(z^{-1})S_r(z^{-1})(r_t - d_t) - \text{control signal}$

 $S_r = (I_r + WC_0)^{-1}$ sensitivity function

Plant Delay Structure

Interactor matrix (IM) – generalization of the scalar time delay Fundamental performance limitation in the system

SISO	MIMO
$y(t) = T(z^{-1})u(t) = z^{-k}\tilde{T}(z^{-1})u(t)$	$Y(t) = T(z^{-1})Y(t) = D^{-1}\tilde{T}(z^{-1})U(t)$
$\lim z^k \cdot T(z^{-1}) = k, k \neq 0$	$\lim_{z^{-1}\to 0} D(z) \cdot T(z^{-1}) = K, \text{K finite and full rank}$
$z^{-1} \rightarrow 0$	$det{D(z)} = z^k$, k - number of infinite zeros

- Interactor matrix characterizes the infinite zeros of the system
- It is often diagonal, but generally it may be a full matrix
- Interactor matrix of the system is not unique:
 - lower triangular IM (Wolovich and Falb 1976)
 - nilpotent IM (Rogozinski et al. 1987)
 - unitary IM (Peng and Kinnaert 1992)

Performance Criteria

GMV cost function:

$$J_{GMV} = Var\{\phi_t\}, \quad \phi_t = P_c e_t + F_c u_t$$

LQG cost function: $J_{LQG} = \frac{1}{2\pi j} \oint_{|z|=1} trace \{Q_c \Phi_{ee} + R_c \Phi_{uu}\} \frac{dz}{z}$

	GMV	LQG	
Design	+ simpler - restriction on the weightings	+ guaranteed stability- more involved	
Benchmarking+ data driven - interactor matrix needs to be known or estimated		+ "classical" optimal benchmark - full model needed	

GMV Control: Generalized Plant

Minimum Variance Control:

$$y_t = D^{-1}\tilde{T}u_t + N\xi_t \implies \qquad \tilde{\phi}_t = q^{-k}Dy_t = q^{-k}\tilde{T}u_t + \underbrace{q^{-k}DN}_{\tilde{N}}\xi_t$$

Generalized Minimum Variance Control:

$$\phi_{t} = P_{c}e_{t} + F_{c}u_{t} = P_{c}(D^{-1}\tilde{T}u_{t} + N\xi_{t}) + F_{c}u_{t} = (P_{c}D^{-1}\tilde{T} + F_{c})u_{t} + P_{c}N\xi_{t} = = D_{g}^{-1}\tilde{T}_{g}u_{t} + N_{g}\xi_{t} \qquad D_{g} \text{ unitary}$$

Interactor filtering: $\tilde{\phi}_t = q^{-k} D_g \phi_t = q^{-k} \tilde{T}_g u_t + \tilde{N}_g \xi_t$ $Var \{\phi_t\} = Var \{\tilde{\phi}_t\}$

Multivariable GMV Controller

Main result:

MIMO GMV Benchmarking

Benchmarking procedure – FCOR algorithm (Huang and Shah 1999)

- Introduction
- Multivariable controller design and benchmarking
- Restricted-structure controllers
- Structure assessment
- Simulation example
- Summary

Motivation

- Often a need for relatively unskilled staff to tune controllers and this implies low order controllers needed.
- Low order controllers often have improved robustness properties relative to high order designs.
- Often a requirement to have the good control action of advanced designs within a controller structure that is simple.
- Nonlinear systems can be linearised at operating points and multiple model RS controllers designed
- Optimal RS controllers can be used as realistic benchmarks; however, model needed in this case

Reduced Controller Structures

SISO level	MIMO level	
Reduced order: $C_0(s) = \frac{c_{n0} + c_{n1}s + + c_{np}s^p}{c_{d0} + c_{d1}s + + c_{dv}s^v}$	Diagonal:	
where $v = p$ is less than the order of the system (plus weightings)	$\begin{bmatrix} C_1 \\ & C_2 \end{bmatrix}$	
Lead lag: $C_0(s) = \frac{(c_{n0} + c_{n1}s)(c_{n2} + c_{n3}s)}{(c_{d0} + c_{d1}s)(c_{d2} + c_{d3}s)}$	$\begin{bmatrix} C_0 & C_{01} & C_{02} \\ & C_1 & C_{12} \\ & & & C_2 \end{bmatrix}$	
PID: $C_0(s) = k_0 + k_1 / s + k_2 s$	Full:	
Filtered PID: $C_0(s) = k_0 + \frac{k_1}{s} + \frac{k_2 s}{\tau s + 1}$	$\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}$	

The assumption must be made that a stabilising control law exists for the assumed controller structure.

Restricted-Structure Design Issues

- MIMO structure: choice of input/output variables, I/O pairing, additional couplings (can use the existing structure)
- Restricted controller structure for each element of the transfer-function matrix
- Optimality criterion e.g. GMV, LQG, H cost functions
- Optimization algorithm (how to find the "optimal" controller parameters)

RS-LQG Control – SISO Case

 ξ, ζ - independent white noise sequences

LQG cost function to minimize:

$$J = \frac{1}{2\pi j} \oint_{|z|=1} \{Q_{c} \Phi_{ee} + R_{c} \Phi_{uu}\} \frac{dz}{z}$$

sensitivity function

Dynamic weightings

$$Q_c = H_q^* H_q = \frac{B_q^* B_q}{A_q^* A_q}$$
$$R_c = H_r^* H_r = \frac{B_r^* B_r}{A_r^* A_r}$$

RS-LQG Control – SISO Case

Step 1: Design full-order optimal controller

RS-LQG Control – SISO Case

<u>Step 2</u>: <u>Restricted-structure optimization problem</u>

{

The optimal controller must be chosen in such a way that J_0 is minimized:

$$\begin{array}{c}
Min_{k_0,k_1,k_2} J_0 \\
 T_0 = \frac{HA_qC_{0n} - GA_rC_{0d}}{A_qA_r(AC_{0d} + BC_{0n})}
\end{array}$$

subject to the controller structure: $C_0(z^{-1}) = k_0 + \frac{k_1}{1 - z^{-1}} + \frac{k_2(1 - z^{-1})}{1 - \alpha z^{-1}}$

$$J_{0} = \frac{1}{2\pi j} \oint_{|z|=1}^{\infty} T_{0}(z^{-1}) T_{0}^{*}(z) z^{-1} dz = \frac{T_{s}}{2\pi} \int_{0}^{2\pi/T_{s}} T_{0}(e^{j\omega T_{s}}) T_{0}(e^{-j\omega T_{s}}) d\omega$$
$$\approx \frac{T_{s}}{2\pi} \sum_{i=1}^{N} T_{0}(e^{j\omega_{i}T_{s}}) T_{0}(e^{-j\omega_{i}T_{s}}) \cdot \Delta \omega_{i}$$

Optimization

 $Min_{\{k_0,k_1,k_2\}} J_0$

- This is a nonlinear optimization problem and generally does not have a closed analytical solution
- Iterative numerical solution required
 - Successive approximation / Edmunds' algorithm
 - Gradient methods / Optimization toolbox
 - Search algorithms (genetic, evolutionary etc.)

RS-LQG: Successive approximation

RS-LQG: Successive Approximation

- Choose the frequency range and number of frequency points N
- For all frequency points calculate all elements of **F** and **L**: $T_0 = Fx L$

where: $F = \begin{bmatrix} f_{11}^{r}(\omega_{1}) & f_{12}^{r}(\omega_{1}) & f_{13}^{r}(\omega_{1}) \\ \vdots & \vdots & \vdots \\ f_{11}^{r}(\omega_{N}) & f_{12}^{r}(\omega_{N}) & f_{13}^{r}(\omega_{N}) \\ f_{11}^{i}(\omega_{1}) & f_{12}^{i}(\omega_{1}) & f_{13}^{i}(\omega_{1}) \\ \vdots & \vdots & \vdots \\ f_{11}^{i}(\omega_{N}) & f_{12}^{i}(\omega_{N}) & f_{13}^{i}(\omega_{N}) \end{bmatrix} \qquad L = \begin{bmatrix} L_{11}^{r}(\omega_{1}) \\ \vdots \\ L_{11}^{r}(\omega_{N}) \\ \vdots \\ L_{11}^{i}(\omega_{1}) \\ \vdots \\ L_{11}^{i}(\omega_{N}) \end{bmatrix} \qquad x = [k_{0} \ k_{1} \ k_{2}]^{T}$ • Calculate optimal X: $x^{opt} = (F^{T}F)^{-1}F^{T}L$

Multivariable RS-LQG Control Design

- Similar procedure can be applied to design the optimal RS-LQG controller in MIMO case
- The suboptimal cost function component to be minimized becomes:

$$J_{0} = \frac{1}{2\pi j} \oint_{|z|=1} trace\{X^{*}X\} \frac{dz}{z} \qquad C_{0}(z^{-1}) = K_{0} + \frac{K_{1}}{1 - z^{-1}} + \frac{K_{2}(1 - z^{-1})}{1 - \alpha z^{-1}}$$

where

$$X = (GD_2^{-1}A_q^{-1}C_{0d} - HD_3^{-1}A_r^{-1}C_{0n})(AC_{0d} + BC_{0n})^{-1}D_f$$

can be represented as a transfer-function matrix.

- J_0 is a scalar so gradient and search algorithms can still be applied to find the optimal solution
- the successive approximation algorithm can also be generalized and least squares solution used

Multivariable RS-LQG Benchmarking

The procedure:

- (1) Specify the restricted structure e.g. multi-loop with PID controllers
- (2) Find the RS controller by minimizing J_0
- (3) Calculate the minimum value of J_0

$$J_{0}^{opt} = \frac{1}{2\pi j} \oint_{|z|=1} trace \{X_{opt}^{*} X_{opt}\} \frac{dz}{z}$$
(4) Calculate this value for the existing controller structure

$$J_0^{act} = \frac{1}{2\pi j} \oint_{|z|=1} trace\{X_{act}^* X_{act}\}\frac{dz}{z}$$

(5) Calculate Controller Performance Index

$$\kappa = \frac{J_{\min} + J_0^{opt}}{J_{\min} + J_0^{act}}$$

Multiple models

- Above algorithms valid for linear system description
- However, real systems are inherently nonlinear
- One possible solution:

> use a number of linear models defined for different operating points

- Introduction
- Multivariable controller design and benchmarking
- Restricted-structure benchmarking in MIMO case
- Structure assessment
- Simulation example
- Summary

Multivariable Interactive Control System

Issues in the Multivariable Control Design

- Selection of the variables to be controlled
- Choice of the manipulated variables
- Interactions between loops
- Self-regulatory v. non-self regulatory loops
- I/O pairing
- Joint stability regions may shrink!
- Decoupling v. multivariable control

I/O Pairing and Relative Gain Array

- Problem of the "best" choice of input/output pairs for a multi-loop control system
- Relative Gain Array (Bristol 1966) widely used in industry
- Steady-state gains required (deviations about operating point) –
 obtained from step tests or from the linear model
- Relative Gain Array defined as

$$RGA = (K^{-1})^T \otimes K$$

element-by-element product

where K is the matrix of static gains between all inputs and all outputs

I/O Pairing and Relative Gain Array

• RGA close to unity = desired pairing with no

interactions

- RGA close to zero = pairing should be avoided
- All elements approx. equal = strongest possible interactions
- Results might be against "conventional wisdom"
- Takes into account only steady-state information

Application of RS Design to I/O Pairing

For a 3x3 MIMO system, the following multi-loop PID control configurations are possible:

- Using RS design technique it is possible to determine the optimal structure in terms of the specified cost function (takes into account also dynamic properties of the system)
- A means of optimally tuning the controllers
- Requirement: full dynamic model of the system

Application of RS Design to Structure Assessment

The controller structure is restricted on two levels, e.g.

- Possible to determine potential benefits that may result from adding additional controllers to the multi-loop system
- When already decided on a particular structure, the optimal controller parameters readily available

- Introduction
- Multivariable controller design and benchmarking
- Restricted-structure benchmarking in MIMO case
- Structure assessment
- Simulation example
- Summary

System Model

Example: regulatory control of a simple 2x2 system with time delays (Huang & Shah 1999)

Parameter K_{12} determines interaction between input 2 and output 1.

The plant has a general interactor matrix D:

$$D = \begin{bmatrix} -0.9578z & -0.2873z \\ 0.2873z^2 & -0.9578z^2 \end{bmatrix}$$

Estimation of the Minimum Variance

Existing controller:

Multi-loop minimum variance controller (calculated for each loop separately)

Two choices of GMV weightings:

(1) MV weightings

$$P_c = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad F_c = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(2) Static GMV weightings

$$P_{c} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad F_{c} = -D^{-1} \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$$

interactor

Benchmarking Results

Output and control variances for different values of K_{12} :

K ₁₂	Controller	Var[y ₁]	Var[y ₂]	Var[u ₁]	Var[u ₂]
1	MV	1.3871	1.5514	0.7989	0.3020
	GMV	2.8245	2.1137	0.1822	0.0144
5	MV	1.3895	1.5514	8	8
	GMV	3.2303	1.9146	0.2078	0.0049
10	MV	1.4038	1.5514	8	8
	GMV	3.3870	1.8782	0.2409	0.0026

MV and GMV controller performance indices

- GMV criterion provides a means of balancing error and control variances
- \bullet It also makes the benchmark realizable (the plant is non-minimum phase for $K_{12}>2)$
- MV benchmark close to 1 for small interactions
- the existing controller not so good if control variances considered

Restricted-Structure Controllers

Existing controller: filtered multi-loop PID tuned using Ziegler-Nichols rules separately for each loop.

The following RS-GMV controllers have been designed using the GMV weightings as in the previous slides:

RS Benchmarking Results

The existing multi-loop PID has been assessed against the RS controllers:

Controller	J ₀
Multi-loop PID	2.8026
RS full	0.0154
RS diagonal #1	0.0859
RS diagonal #2	0.5022
RS upper triangular	0.0357
RS lower triangular	0.0658

- The results show the potential for improving the current performance
- I/O pairing: OK

• If further reduction in variance required, additional feedback between output 1 and input 2 (rather than between output 2 and input 1) would bring greater improvement

- Introduction
- Multivariable controller design and benchmarking
- Restricted-structure benchmarking in MIMO case
- Structure assessment
- Simulation example
- Summary

Summary

- Benchmarking multivariable loops
- Benchmarking multi-loop controllers
- Detecting underperforming loops
- Tuning guidelines for the existing controllers
- Determining the optimal controller structure (I/O pairing)