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Overview

In this presentation we are going to illustrate the benchmarking
exercises on two real-world industrial simulation case studies:

•The first model is a divided column distillation plant. This plant 
model is quite characteristic of the chemical industry.

• The second one  is a steam turbine of a coal fired power plant.
The power plant system is representative of the industries 
present in the power and servo industrial sector. 

• The control system sets-up and the performances are 
representative of the real process.



Overview
Characteristics of distillation column:

• stochastic sources acting on the system process, 
• the systems’ outputs tend to remain around a given value for long 
periods of time. 
• if process variability is known and may be reduced, then it is 
possible to increase the process to its safe operational limits in 
order to improve productivity and efficiency. 
• Since maintaining a steady product concentration level near 100%
is the major control objective, the variances of the controlled 
temperatures  should be reduced as much as possible. Taking 
variance as  measure of performance is quite applicable and really 
meaningful.

Applicable benchmarks:
• MV, GMV , RS-LQG benchmarks 



Overview

Characteristics of the steam turbine:

• references and disturbances tend to be deterministic in nature

• frequent  references changes and hence output levels. 

• variance as a measure of performance are not relevant, which 

implies that MV and GMV are not useful

Suggested benchmark:

• if disturbances and references models are available or can be 

easily obtained, then it is  possible to use the RS-LQG 

algorithm to benchmark such systems. 



Comparison of SISO Benchmarks



Currently applied pairing between Mv-s and Cv-s:
TVK – reflux ration of A Y1(U5)
THK – split ratio Y2 (U1)
TUK – flow of component B Y3(U2)
POK – cooling energy in condenser of A Y4(U4)
Luk – flow of component C, Y5(U6).

Outputs    Inputs
Y1 : Temperature in VK   U1 : Split ratio between columns VK and HK
Y2 : Temperature in HK   U2 : Flow of component B
Y3 : Temperature in UK   U3 : Heating energy for component C
Y4 : Pressure in OK   U4 : Cooling energy in the condenser A
Y5 : Level in the column sump   U5 : Reflux ratio of component A

  U6 : Flow of component C

•The ultimate control objective is the purity of 
all three components.
•No online measurements for purity in the 
plant
•Three temperatures are controlled as a 
substitute
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MV Benchmark

• Estimate the process time delay
• Estimate the minimum achievable variance
• Estimate the actual variance (or the mean square error)
• Compare these two values:
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GMV benchmark

C0

GMV: minimize the variance of the “generalized” output f0(t):
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The MV and GMV benchmarking algorithms use only 
system data to compute the benchmark index. For both 
algorithms the user must define a data length and an 
autoregressive model length 

• Data length and autoregressive model length are system specific

• Data length (n) influences the statistical confidence in the value 
of the performance index 

•Autoregressive model length  (m)  should be such that the closed
loop impulse response is fully captured with m-samples 

•Generally (n) should be much greater than (m), typical values 
range from  n = 150 x d, to  n =1500

MV/GMV Benchmark Computation



The MV and GMV algorithms require that the estimate 
(k) of system time delay (d) be precise, i.e k = d

• If k < d, then, estimated index < true value of the of 
the loop performance 

• By conducting a series of test using a range of time 
delay values, a curve can be constructed, with the 
true time delay and benchmark index as a point on 
the curve. This curve is   user defined, i.e., the 
process controller is required to reduce the error 
variance to a some value in the given interval (k) 

MV/GMV Benchmark Computation



MV Benchmark Results, Loop 2
THK (Y2) – split ratio (U1)

• the value of the 
benchmark index did not 
change significantly as 
the dead time was varied. 
• it is highly probable that
the dead times for these 
loops is either 1 or 2 
sample intervals.
• the existing controller is 
likely to be a MV 
controller



MV benchmark results, loop 4

The best possible MV 
index under normal 
operating conditions is 
approximately 0.25, 
hence it can be 
assumed that 
compared to the MV 
controller, the 
controller in this loop is 
poorly tuned.

POK (Y4) – cooling energy in reflux of A 
(U4)



GMV benchmark - loop 2
The GMV benchmark algorithm needs a set of dynamic error and control 
weights to compute the performance index. These weights act as design 
parameters that specify the type of optimal controller required. the user is 
required to know and specify the optimal performance requirements for the 
control loop under assessment.

Error weighting Control weighting



GMV benchmark : loop 2
In order to evaluate the control effort, we use the weighting shown in the 
previous slide and vary the relative weighting between them. As the 
weighting of control increases, more penalty is put on control action.

As the value of the 
scalar term was 
increased, the 
performance of  
controller can be seen 
to depreciate as 
indicated by the 
benchmark index. The 
controller is indeed a 
MV controller and it 
may be  using too 
much control action.



GMV Benchmark - Loop 4

Error weighting Control weighting



GMV Benchmark - Loop 4

In term of GMV 

metric, loop 4 still 

under-performed, 

it is likely that it 

should be re-

tuned.



RS-LQG Benchmark

The RS-LQG algorithm does not use plant data to 
compute the benchmark index, a process model in 
transfer function form is required

1. Existing controller and RS controller type required 
(this information normally already exist).

2. Models of the system disturbance and reference in 
transfer function format are also required

3. The accuracy of the results returned ultimately 
depends on the accuracy of the model used for 
benchmarking



RS- LQG Benchmark
The RS-LQG algorithm requires the user to specify 

dynamic error and control weightings
1. Weightings determine the desired optimal controller 

required 

2. Difficult to compare the performance results returned for 
the same process control loop when two different set of 
weightings are used

3. The choice of weightings must be consistent with the 
control problem, especially for  RS benchmarking

In the following slides, the effect of weighting on RS-
LQG will be illustrated.



RS-LQG Loop 4
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RS-LQG Benchmark - Loop 4

Red: existing Controller – Violet: re-tuned controller

Dynamics response Steady state response



RS-LQG Benchmark - Loop 4
From the previous slide, it can be seen that the re- tuned 

RS-LQG has a much faster dynamic response than the original 
controller. 

On the other hand, in term of regulation performance, the 
original controller is better. The control action is much less than that 
of the RS-LQG controller. The variance of the output is also smaller. 
It should be noted that the steady state results shown is after de-
trending.

Error weighting       Qc=1   Control weighting    Rc= 0

The noise is the same as before:

Now, the we change the RS-LQG weighting as follows:
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RS-LQG Benchmark - Loop 4
Red: existing Controller – Violet: re-tuned controller

Dynamics response Steady state response



RS-LQG Benchmark - Loop 4
Now, the re-tuned RS-LQG controller has 

better performance than the original controller both in 
terms of dynamic response and regulation 
performance. In the case of the regulation 
performance, the new controller has greatly reduced 
the output variance, with a modest increase on the 
control effort. Since there is no integral in the error 
weighting, the new controller is also a proportional 
controller. However, the gain is greatly increased.

This clearly illustrate that the weighting 
selection for the RS-LQG design plays a deciding role 
on its success.



• MIMO systems contain loop interactions and 
recycles

• Optimising each loop , might lead to system 
instability

• SISO benchmarking indices cannot be 
extended to the MIMO case

• MIMO benchmark for overall sub-process 
required

MIMO Benchmark



Extension to multivariable systems is generally nontrivial. Possible 
difficulties are a result of:

• interactions between loops
• loops need to be prioritised to obtain desired objective
•performance is also dependent on control structure 
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LQGPC benchmark

•The LQGPC algorithm does not use plant data to 
compute the benchmark index, a process model in 
state space form is required

• Existing controller model is required 

•Models of the system disturbance are required

• Future reference trajectory is assumed to be given

•The accuracy of the results returned ultimately 
depends on the accuracy of the model used for 
benchmarking



Benchmarking Results - Steady State

The control weighting is set to be zero. The LQGPC benchmark 
tries to minimise  weighted output variance. Two error weightings 
are used. The result indicates that the original PID controller is 
operating as a MIMO MV controller



LQGPC - Transient Performance

For the following reference changes:



LQGPC - Transient Performance
The transient performance test indicates that the multi-loop PID 
controller is operating at only 10% of the GPC optimum. 



Steam Turbine

P o si ti o n
C o ntr o lle r

Sp e e d  a n d
L o a d

C o n tro ll e r

M S C V

R e h e at e r

IPH P

n Actual

+

Po s it i o n

n Referen ce

G en e ra t o r

L PB o il er

C o n d en se r

R C V

+

-

-

C o ntr o lle r

I PB C V

H PB
C V

E le ct ri ca l
G ridPr es su re

Con tr oller
-

+
HPBS

Pr ess ur e
C on tro ller

-

+ IPBS

2 50  b a r
5 40  ° C

5 0   b ar
3 19  ° C

50    b a r
54 0 °C

7      b a r
2 6 0 °C

0. 05  b ar
32 .1  ° C

P Actual

P Referen ce

p Actual

p Refer ence

p Reference

p Actual



RS-LQG Benchmark

As discussed before, in the case of a steam turbine, 
dynamic performance is the major concern.

The stochastic type of benchmark is not useful in this 
case. Only RS-LQG and LQGPC type of benchmarking 
will be discussed.

Since both of them are  model based,  it can be 
considered as a controller retuning  exercise.

In the following, we will only present results from tuning.



RS-LQG Result
Load Rejection 100% to 10%



RS-LQG Result

Load Rejection 100% to 10%



RS-LQG Result
Load Rejection 100% to 50%



RS-LQG Result
Load Rejection 100% to 50%



LQGPC Result
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LQGPC Result
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Benchmark Criteria Effectiveness
The performance of a controller in steady state conditions 
might be significantly different from it’s performance in 
dynamic conditions
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Benchmark Computation Effectiveness
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How to translate gain margins, phase margins, bandwidth, overshoot, 
rise time, e.t.c to dynamic error and control weightings.



Controller Design / Retuning Effectiveness

The main question is not how well the system is performing, but can 
system performance be improved and how?

•The MV and GMV algorithms only give an indication of how well 
the existing controller is performing

• No information is provided on how the controller can be re-
tuned to obtain that performance

•No information is provided that could aid controller re-design

•The RS_LQG algorithm gives an indication of how well the 
existing controller is performing as well as design information

•The RS_LQG algorithm can be used to test different optimal 
design scenarios



Controller Design / Retuning Effectiveness

MV, GMV, RS_LQG algorithms are defined for SISO systems, but  most 
industrial systems are MIMO in structure

•The performance index is thus the performance of the loop controller if all 
other process loops are set to manual 

•The improvement in the performance in one loop could cause 
performance degradation in a corresponding loop
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Conclusions

• SISO benchmarks provide a wealth of useful 
information.

• The move from SISO to MIMO algorithms will 
provide better optimisation targets.

• Engineering judgement is still an essential 
part of the benchmarking process.

• Define the control/optimisation problem, then 
chose the benchmark tool that best fits best.


