
 
 
                                                                                                                                                      

 

 
 
 

IST-2000-29239 PAM 
PERFORMANCE ASSESSMENT AND BENCHMARKING OF CONTROLS 

2001 – 2004 
 

 

Weighting Selection for Controller Benchmarking and Tuning 
 
 
 

M J Grimble and Pawel Majecki 
 
 
 

ICC/219/Dec 2004 
 

PAM Document Code:   PAM-12-TN-1-V1 
 
 
 
 

Industrial Control Centre 
University of Strathclyde 

Graham Hills Building 
50 George Street 
Glasgow, G1 1QE 

 
Telephone: 0141 548 2378/2880 

Fax: 0141 548 4203 
E-mail: m.grimble@eee.strath.ac.uk 

Website: www.icc.strath.ac.uk/ 
 
 
 
 

Date: 6 December 2004 

IC2



PAM-12-TN-1-V1 

Industrial Control Centre 06/12/04 2

 
Version History 
 
Version Date Author(s) and Company Approved By and Company 
1 06/12/2004 Industrial Control 

Centre, Strathclyde 
University 

Project Steering Committee 

 
 
Changes from the Previous Authorised Version 
 
Section(s) Description of Change(s) 
All Original.  Not applicable. 
  

 
Document Control Information 
 
! Controlled Copy No. 1 
" Uncontrolled Copy. For information only. 

 
 
Controlled Copy Holders 
 

1. Industrial Systems and Control Limited 

2. ABB 

3. SIEMENS 

4. University of Strathclyde 

5. CESI 

6. BASF 

 
 
 



PAM-12-TN-1-V1 

Industrial Control Centre 06/12/04 3

Summary 

 The selection of a cost function for benchmarking and performance assessment is always 

problematic.  A new method is described in this report that enables such weighting functions and cost 

index to be specified knowing the existing control structure.  It is assumed that the system already has a 

rudimentary control algorithm, such as a PID design and the requirement is to assess this against a 

higher order optimal control solution.  General guidelines are also discussed. 
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1. Weighting selection based on the existing controller structure 

 A cost function weighting selection method is developed based on a result from Generalised 

Minimum Variance (GMV) control laws that may also be extended to Non-linear Generalised Minimum 

Variance (NGMV) results.  However, it is also applicable in many cases to Linear Quadratic Gaussian 

(LQG) cost weighting selection methods.  It may easily be shown that with reasonable choices of 

dynamic cost function weightings, a GMV controller gives similar responses to those of an LQG 

controller.  Thus, a weighting selection method that works for GMV (or NGMV) designs will also apply 

to LQG solutions [1]-[5].   

 If a system is already controller by a PID controller, or some other well defined classical control 

structure, then a starting choice of GMV cost function weighting is to choose the ratio of the error 

weighting divided by the control weighting equal to the aforementioned controller.  There are several 

assumptions to make this result valid but it is a starting point for design.  Moreover, it has realistic 

frequency response characteristics for weightings inherent in the approach.  For example, a PID 

controller clearly has high gain at low frequency and if it includes a filter then it will have low gain at 

high frequencies.  This is exactly the type of response needed for the ratio between the error and control 

weightings. 

 The GMV procedure is therefore to use the transfer of the existing controller to define the cost 

function weightings.  An indirect benefit of this approach is that it is always difficult to sort out the type 

of scaling required for defining the cost weightings.  Clearly, a system which has different physical 

parameters will require different cost function weightings, even though the underlying process is the 

same.  By utilising the existing controller structure to define the cost weightings this scaling problem is 

avoided.  Moreover, the type of transient response characteristics obtained for the unmodified optimal 

control solution will probably be of the same order of those for the classical design.  This therefore 

provides a starting point for weighting selection [7]-[9]. 

 If the system is new and does not have an existing controller then a different procedure must be 

followed.  Such a procedure will require more iterations or a simulation model being available.  In this 

case, the form of the error weighting and the control weighting will probably be defined beforehand but 

the actual size of the cost function weightings will depend upon the speed of response required from the 

system.  If the system is to be made faster then the magnitude of the control weighting should be 

reduced.  One method of getting into the ball-park of a good solution is to try small control weightings 

and then a much larger control weighting and interpolate between the two to obtain the type of response 

required.  For example, if the small control weighting gives a one-second response and the large control 

weighting gives a 50-second response then something in between should give an intermediate value for 

the dominant time constant.  Such a procedure does of course require iteration and on some systems, it 
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will not be possible to try low control weightings that might lead to very harsh actuator movements.  

Nevertheless, cost-weighting selection can be achieved by such an iterative process.  

 Out of the two aforementioned methods, the former is the most promising since it provides a very 

fast way of generating the desired cost weighting functions.  Once the existing controller structure is 

known then the required weightings follow almost immediately.  It is true that some adjustment may be 

necessary after this initial selection, since it is generally the case that the magnitude of the control 

weighting function needs to be reduced to speed up the system.  In this way, the initial design will 

normally be close to the existing classical controller but the design can be much improved by reducing 

the value of the control weighting term.  Since the initial design will probably give reasonable responses 

this procedure reduces the danger of any experiments on the plant.  In fact, two or three more trials for 

different weightings will probably be sufficient.   

 As mentioned above the basic design procedure applies to GMV and NGMV methods but they 

also apply to LQG solutions by implication and even provide a starting point for weighting selection in 

H∞ designs. 

2. Relationship to the Smith Predictor 

 The GMV optimal controller can be expressed in a similar form to that of a Smith Predictor 

(Grimble 2001 [8]).  It also provides an optimal method of design and optimal stochastic disturbance 

rejection and tracking properties.  However, the use of this structure also limits the applications to 

open-loop stable systems.  That is, although the structure illustrates a useful link between the new 

solution and the Smith time delay compensator, it also has the same disadvantage, that it may only be 

used on open-loop stable systems.  Nevertheless the structure is intuitively reasonable and should be 

valuable in applications.  This Smith Predictor will now be explained for open loop stable processes.   

 It is shown in Grimble 2003 [10, 11] that the GMV controller may be implemented in a Smith 

Predictor structure. If the system is in the state space model form, the structure is as shown in Fig. 1, 

which is intuitively reasonable and easy to explain.  Note from the control signal u to the feedback 

signal p that the transfer is null when the model Wk
kz −  matches the plant model.  It follows that the 

control action, due to reference signal r changes, is not due to feedback but involves the open-loop 

stable compensator and the inner feedback loop.   

 This inner-loop has the ratio of the error to control weightings  1
ck cF P−  acting like an inner-loop 

controller, with return difference operator: ( )1 Wck c kI F P−− . Thus, if the plant already has a PID 

controller that stabilises the delay free plant model, the weightings can be chosen equal to the PID 

controller.  The choice of the weightings to be equal to a PID control law is only a starting point for 

design, since stability is easier to achieve.  However, the control weighting will normally require an 

additional lead term (or alternatively a high frequency lag term may be added to the error cP  

weighting).  The high frequency characteristics of the optimal controller will then have a more realistic 
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roll off. This may not be necessary if the PID solution already has a low pass filter for noise 

attenuation. 

 The implication of these results is that the GMV cost weights may be defined in this manner and 

by implication it will probably be a good starting point for LQG weightings. 
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Fig. 1:  Nonlinear Smith Predictor Compensator and Internal Model Structure 

3. Iterative Cost Function Weighting Selection for Scalar Systems 

 If the system does not already have a stabilising control solution then the more general 

guidelines given below must be followed. The selection of cost weighting functions does not involve 

precise rules but engineering judgements.  It is difficult to give rules which ensure a given behaviour is 

obtained, since in most cases a number of criteria must be satisfied at the same time and trade-offs must 

be made. The following guidelines will however provide a basis for selecting and changing cost 

function weightings for 2/ /GMV H LQG  and even H∞  problems [6]. 

 

1. Error weighting:   An integrator on the error weighting function will often result in integral 

action in the controller. There are a few cases where integral action is not introduced 

automatically when integral error weightings are used.  For example, when two degrees of 

freedom designs are considered, inferential control is used or when noise models cause a change 

in the controller response so that pure integral action is not included. The general effect of 

introducing integral error weighting is, however, to introduce high gain into the controller at low 

frequencies.  This result is also valid for more general disturbance models. If say a system has 

dominantly sinusoidal disturbances of frequency ωq, then the weighting can include a lightly 

damped second order system with natural frequency ω0.  In other words the error weighting 
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should have a high gain in the frequency range where the disturbances dominate or good tracking 

accuracy is required. 

 

2. Sensitivity weighting:   When integral weighting is used on the sensitivity function, this has a 

similar effect to Case 1. Sensitivity costing normally arises in mixed sensitivity problems where 

measurement noise is not present in the system description and hence integral action in the 

controller normally occurs (again not necessarily for 2 DOF or inferential control problems).  For 

more general weightings the sensitivity will normally be reduced in frequency ranges where the 

magnitude of the weighting is large. 

 

3. Lead terms on the control weighting:   By introducing a high gain at high frequencies on the 

control weighting term, the controller is normally made to roll off in the frequency range where 

the gain is high (relative to error weighting terms).  The use of a weighting function with high 

gain at high frequency is more important in H∞  design than in GMV/H2 minimisation problems.  

This weighting provides one mechanism of ensuring the controller will roll off at high 

frequencies.  It ensures the usual wide bandwidth property of H∞  designs does not lead to 

unacceptable measurement noise amplification problems.  Controller roll-off at high frequencies 

occurs naturally in LQG or H2 designs due to the use of a measurement noise model.  If a 

measurement noise model is not included, GMV and LQG designs can give too high a gain at high 

frequencies. 

 

4. Lead terms on the control sensitivity costing:   The control sensitivity function plays a similar 

role to the control weighting term referred to in Case 3. In mixed sensitivity problems where a 

control sensitivity term is present, high weighting gain at high frequency is normally advisable for 

H∞  designs. 

 

5. Complementary sensitivity costing:   In H2 or LQG problems complementary sensitivity terms 

are not normally present.  In early H∞  designs these terms were introduced commonly, but the 

disadvantages have recently been recognised. Complementary sensitivity weighting has an 

identical effect to combining a weighting function together with the plant transfer function acting 

on a control sensitivity term.  Multiplying the control sensitivity function by the plant transfer 

function does of course give the complementary sensitivity function.  Since there are generally 

disadvantages in using a complementary sensitivity weighting, this term is normally neglected. 

 

6. Effects of the weighting functions on the cross-over frequency:   When large or small error 

weightings are discussed, this is of course relative to the size of the control weighting terms.  In 



PAM-12-TN-1-V1 

Industrial Control Centre 06/12/04 9

this context large is only in relation to the other weighting functions.  Although the weighting 

functions do have an effect which depends upon the scaling of the system model, it is also true 

that the point at which the frequency response plots of the error weighting (sensitivity weighting) 

and the control weighting (control sensitivity weighting) cross often determines the bandwidth 

point for the system.  Indeed a starting point in H∞  design, for choosing the relative gain sizes, is 

to choose the cross-over point to coincide with the desired bandwidth.   

 

7. Angle between the weightings:   In general the angle between the frequency responses of the 

weighting should be limited at the crossover point.  Recall that this point is often close to the 

unity-gain crossover frequency for the system, and the weightings should not therefore introduce 

rapid unnecessary phase changes unless this is important for stability. 

 

8. Lead terms on the error weighting:   A lead term can be introduced on the error weighting 

function or sensitivity weighting function in an attempt to improve transient responses.  If integral 

action is used on the error term and a lead term is used on the control weighting, the crossover of 

the magnitude diagrams will involve a difference in slope of 40 dB per decade.  This can result in 

the system being particularly sensitive in the mid-frequency range.  By adding a lead term on the 

error weighting function, the change in slope can be made 20 dB's per decade and the resulting 

more gradual phase shifts often lead to a design with better step response characteristics.  Similar 

remarks apply to sensitivity weighting functions where a lead term on the cost weighting may be 

necessary to reduce the rate of change of gain and phase in the mid- frequency region. 

 

9. Robustness weighting function:   Instead of penalising each of the cost terms independently, it is 

sometimes more beneficial to multiply each term by the same weighting function:Wσ . This is 

particularly true when trying to reduce the peak level on sensitivity functions which occur in the 

mid-frequency range.  At low frequencies a high penalty on the sensitivity function will cause a 

high controller gain which results in a small sensitivity function magnitude.  In the frequency 

range where the loop gain has a magnitude of approximately unity, this rule (that heavy penalties 

will force down the sensitivity function magnitude) no longer holds.  A more effective way of 

reducing the peak on the sensitivity function, in this case, is to reduce the loop gain so that a 

frequency response peak of greater than unity does not occur. 

  

 A heavy penalty on the control weighting term or controller sensitivity function can cause a 

reduction in controller gain and hence an improvement in the sensitivity function in the mid 

frequency range.  The combination of weights which are needed is, however, difficult to 

determine since in this frequency region the system characteristics are particularly sensitive.  

Experience has revealed that by using a common weighting function,Wσ , both objectives are met, 
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sometimes providing improvements in both the sensitivity function and the control sensitivity 

function simultaneously.   

4. Practical selection of LQG and GMV Dynamic Weightings. 

 A more detailed procedure for the selection of the dynamic weightings is presented in this 

section, which, together with the general guidelines given above, should assist in the selection (design) 

process. The GMV and LQG cost functions for the SISO case are collected in Table 1 and the notation 

therein will be used throughout this section. 
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Table 1. GMV and LQG cost functions 

 

First we state a few general rules that are useful when no a priori knowledge about the 

controlled process is available. 

 

RULE 1. The weighting choice should be consistent with the existing controller structure – in 

practice it means that if the existing controller is of the PID type, the error weighting should 

include an integrator (see RULE 2). Alternatively, the control weighting could be selected 

to include a delta (a finite difference) operator – in both cases, the resulting optimal 

controller contains integral action. 

 

RULE 2. The common requirement is that the error weighting Pc (Hq) should normally include an 

integral term, which corresponds to the integral action in the controller. 

 
)1( 1−−

=⇒
z

PP cn
c  or 

)1( 1−−
=⇒

z
B

H q
q  

 Pcn (or Bq) may be constant or they may have the form (1-αz-1) where 0<α<1 is a tuning 

parameter (the larger α, the sooner integral action will be “turned off”) 

 

RULE 3. The control weighting Fc can be chosen as a constant or as a lead term to ensure the 

controller rolls-off at high frequencies and does not amplify the measurement noise. 
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  ρ=⇒ cF    or  1(1 )cF zρ γ −⇒ = −  

  ρ=⇒ rH    or  1(1 )rH zρ γ −⇒ = −  

where ρ and γ can be considered tuning parameters. In the case of the GMV design, ρ should normally 

be negative. 

 

 The full utilization of the dynamic weightings is only possible when one has the knowledge of the 

process model linearized around the working point. This can be identified using one of the common 

methods, however one can also try to approximate the design given only some limited information 

about the process – below we will present the procedure for selecting the dynamic weightings, which is 

based on the two following parameters: the dominant time constant of the process and the process gain. 

This approach is normally valid for process control where the models can often be approximated as first 

order lags with time delay. 

 

Note: The procedure applies only to open-loop stable plants, for which the unit step response 

converges to a finite value. 

 

The approximate method of estimating the process gain and dominant time constant is shown in 

Fig. 2, which represents the unit step response of an overdamped (or slightly underdamped) system: 

 
Fig. 2:  Time delay plus first-order-lag approximation of an overdamped system 

 

The approximate model is hence assumed to be of the following general form: 
 

( )
1

dsT KK s e
sτ

−=
+  

where: 
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Td - time delay [s] 

τ - dominant time constant [s] (first order equivalent) 

K - process gain 

 

The following paragraphs expand on the few rules given above and are concerned with the 

selection of the LQG weightings in the continuous-time case, given a model of the plant. However, a 

similar procedure applies also to the selection of GMV weightings (simply replace Hq with Pc and Hr 

with Fc). 

 The expression for the LQG cost function above only defines a general form and the crucial step 

is to define a cost-index which can be used as a benchmark in a particular PID or classical control 

application.  One option is to set Qc = 1 and Rc = 0, so that a minimum variance benchmark is obtained. 

The main disadvantage is that unrealistic designs often result that could not be achieved in practice. 

Some control costing to limit actuator variations is almost always desirable.  However, since variance of 

regulating error can often be related to financial performance, one element in the criterion can involve 

the variance E e t{ ( )}2 . 

 If the cost index only relates to financial concerns the resulting controller characteristics may be 

undesirable.  To achieve reasonable performance characteristics the following features should normally 

be included: 

(i) The error weighting should include an integrator, so that the controller has integral action to be 

consistent with a PID restricted structure assumption (in addition to a constant variance term). 

(ii) In the absence of a measurement noise model, the control weighting should include a lead term to 

roll off the controller gain at high frequency.  This should be consistent with any PID high 

frequency filters. 

The above would suggest a possible parameterization of the dynamic cost weightings, of the form: 

  Q H Hc q q= *    and    R H Hc r r= *      (1) 

where 

  H sq q= +1 ω /     and     H sr r= +ρ ω( / )1     (2) 

Clearly H s sq q= +( ) /ω  represents integral action, which is cut off at the frequency ω q .   If ω q → 0  

the minimum variance (constant) term dominates. If ω c  is the desired unity gain crossover frequency 

for the system, ω q can be chosen as ω ωq c= / 10 to initiate a design. The resulting Hq has unity gain 

in the mid to high frequencies and the control weighting must be chosen relative to this value. 

 The weighting Hr is a lead term and ω r  should be selected to roll-off the controller, where 

measurement noise dominates. A starting value for a benchmark design is ω ωr c= 10 .   The value of ρ  

is chosen to determine the speed of response of the system.  The intersection point for the frequency 
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response magnitude plots of Hq(s)W(s) and Hr(s) will be denoted by ω0  and this frequency is often 

close to the unity gain crossover frequency for the system.  Let ω g  represent the corner frequency for 

the dominant time constant in the plant model W.  Then ω ω0 ≅ c  can be chosen to be ω ω0 3= g  for a 

process plant and ω ω0 10= g  for a machine control system. 

 To determine ρ, the point at which the plots of Hq(s)W(s) and Hr(s) intersect is required. That is, 

| ( )|.| ( )| | ( )|H j W j H jq rω ω ω0 0 0=  

At a particular frequencyω0 write: 

0 0( ) ( ) r i
q w wH j W j H jHω ω = +  

and 

0( ) ( )r i
r r rH j H jHω ρ= +  

Then ρ can be found as the point where 
2 2 2 2 2(( ) ( ) ) ( ) ( )r i r i

r r w wH H H Hρ + = +  

 
Fig. 3 : Error and Control Weighting Frequency Responses 

(Two control weighting choices all with common intersection point at the frequency ω0 ) 
 

 To summarise the design choices: 

(i) Typically 3 100ω ω ωg g< < and ω ωc ≅ 0  

(ii) ω ωq = 0 10/  and ω ωr = 10 0  

(iii) 
2 2

2 2

( ) ( )
( ) ( )

r i
w w
r i
r r

H H
H H

ρ +
=

+
 evaluated at ω0 . 
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 As previously noted, another possible and fundamental method of choosing ρ is to specify the 

desired relationship between input and output powers at the optimum: 

η = E e t E u t opt{ ( )} / { ( )}|2 2  

 This completes the specification of the benchmark performance cost against which to judge a PID 

design. 

 
Remarks: 

Only three parameters are needed to fully determine the simple weightings given in (2): 

1. Cut-off frequency ωq [rad/s] 

2. Cut-off frequency ωr [rad/s] 

3. Control weighting gain ρ 

The first two can be determined given only the dominant process time constant. To find parameter ρ, 

however, the knowledge of the plant model W is required. If no such accurate model is available, then 

there are two possible options to consider: 

• plant model W is approximated with first order dynamics using the dominant time constant and 

the gain. 

• ρ is considered a tuning parameter determining the relative importance of the variance of the 

error signal and control activity – hence, the changing of this parameter will modify the speed 

of response of the system. 

The weightings defined in (2) correspond to the continuous-time domain. In order to obtain their 

discrete-time equivalents, it is necessary to use one of the discretisation methods – if the sampling 

period is small enough, such approximation will be valid. The common discretisation method is 

Tustin’s rule, which maps s-domain into z-domain according to the formula 

1

1

1
12

−

−

+
−

=
z
z

T
s

s

,   (Ts - sampling time) 

 
which yields the discrete LQG weightings (just replace Hq with Pc and Hr with -Fck to obtain GMV 
weightings): 
 

)1(2
)1(

1 1

1

−

−

−

+
+=

z
zT
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q

ω
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)1(
)1(21( 1
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+=
zT
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r ω
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To further illustrate the procedure, the algorithm will be presented for the special case of a first-order 

process with time delay. 

Algorithm 

Input parameters: Td, K, τ, β, Ts 

β is a number from 3 to 10 – higher numbers indicate faster desired response. For example, β = 
3 may correspond to a process plant, and β = 10 to a machine control system. Ts is the sampling 
period in seconds. Time delay Td is only necessary to determine the discrete delay k in samples 
and is not used explicitly in the algorithm. 
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Outputs:  ωq, ωr, ρ 

 

(1o) 2 /gω π τ=  - plant corner frequency [rad/s] 

(2o) c gω βω=  

(3o) /10q cω ω=  and 10r cω ω=  

(4o) 
2 2 2 2

2 2

( )( 1)
( )

c q cr

c c rK
ω ω ω τωρ

ω ω ω
+ +

=
+
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